Skip to main content

Brain, Learning, and Memory: Role of H2S in Neurodegenerative Diseases

  • Chapter
Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 230))

Abstract

For more than 300 years, the toxicity of hydrogen sulfide (H2S) has been known to mankind. However, this point of view is changing as an increased interest was observed in H2S biology in the last two decades. The scientific community has succeeded to unravel many important physiological and pathological effects of H2S on mammalian body systems. Thus, H2S is now referred to as a third endogenous gaseous mediator along with nitric oxide and carbon monoxide. Acting as a neuromodulator, H2S facilitates long-term potentiation and regulates intracellular calcium levels, which are important processes in learning and memory. Aberrant endogenous production and metabolism of H2S are implicated in pathogenesis of neurodegenerative diseases including Alzheimer’s disease (AD) and Parkinson’s disease (PD). Various H2S donors have shown beneficial therapeutic effects in neurodegenerative disease models by targeting hallmark pathological events (e.g., amyloid-β production in AD and neuroinflammation in PD). The results obtained from many in vivo studies clearly show that H2S not only prevents neuronal and synaptic deterioration but also improves deficits in memory, cognition, and learning. The anti-inflammatory, antioxidant, and anti-apoptotic effects of H2S underlie its neuroprotective properties. In this chapter, we will overview the current understanding of H2S in context of neurodegenerative diseases, with special emphasis on its corrective effects on impaired learning, memory, and cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-MST:

3-Mercaptopyruvate sulfurtransferase

Aβ:

Amyloid-β

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

CAT:

Cysteine aminotransferase

CBS:

Cystathionine-β-synthase

CNS:

Central nervous system

CSE:

Cystathionine-γ-lyase

H2S:

Hydrogen sulfide

KATP :

ATP-sensitive potassium channel

LTP:

Long-term potentiation

mitoKATP :

Mitochondrial KATP channel

NaHS:

Sodium hydrogen sulfide

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NMDA:

N-methyl-d-aspartic acid

NSAIDs:

Non-steroidal anti-inflammatory drugs

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

References

  • Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16(3):1066–1071

    CAS  PubMed  Google Scholar 

  • Bauer EP, Schafe GE, LeDoux JE (2002) NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J Neurosci 22(12):5239–5249

    CAS  PubMed  Google Scholar 

  • Berzofsky JA, Peisach J, Blumberg WE (1971) Sulfheme proteins. I. Optical and magnetic properties of sulfmyoglobin and its derivatives. J Biol Chem 246(10):3367–3377

    CAS  PubMed  Google Scholar 

  • Brown WR, Blair RM, Moody DM, Thore CR, Ahmed S, Robbins ME, Wheeler KT (2007) Capillary loss precedes the cognitive impairment induced by fractionated whole-brain irradiation: a potential rat model of vascular dementia. J Neurol Sci 257(1–2):67–71

    PubMed  Google Scholar 

  • Burnett WW, King EG, Grace M, Hall WF (1977) Hydrogen sulfide poisoning: review of 5 years’ experience. Can Med Assoc J 117(11):1277–1280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Butterfield DA, Castegna A, Lauderback CM, Drake J (2002) Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 23(5):655–664

    PubMed  Google Scholar 

  • Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, Kevil CG, Lefer DJ (2009) Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res 105(4):365–374

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59(3):527–605

    CAS  PubMed  Google Scholar 

  • Chen CC, Shen JW, Chung NC, Min MY, Cheng SJ, Liu IY (2012) Retrieval of context-associated memory is dependent on the Ca(v)3.2 T-type calcium channel. PLoS One 7(1), e29384

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM (1998) Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol 55(11):1449–1455

    CAS  PubMed  Google Scholar 

  • d’Emmanuele di Villa Bianca R, Sorrentino R, Coletta C, Mitidieri E, Rossi A, Vellecco V, Pinto A, Cirino G, Sorrentino R (2011) Hydrogen sulfide-induced dual vascular effect involves arachidonic acid cascade in rat mesenteric arterial bed. J Pharmacol Exp Ther 337(1):59–64

    PubMed  Google Scholar 

  • Diwakar L, Ravindranath V (2007) Inhibition of cystathionine-γ-lyase leads to loss of glutathione and aggravation of mitochondrial dysfunction mediated by excitatory amino acid in the CNS. Neurochem Int 50(2):418–426

    CAS  PubMed  Google Scholar 

  • Dorman DC, Moulin FJ-M, McManus BE, Mahle KC, James RA, Struve MF (2002) Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium. Toxicol Sci 65(1):18–25

    CAS  PubMed  Google Scholar 

  • Dwyer BE, Raina AK, Perry G, Smith MA (2004) Homocysteine and Alzheimer’s disease: a modifiable risk? Free Radic Biol Med 36(11):1471–1475

    CAS  PubMed  Google Scholar 

  • Enokido Y, Suzuki E, Iwasawa K, Namekata K, Okazawa H, Kimura H (2005) Cystathionine β-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J 19(13):1854–1856

    CAS  PubMed  Google Scholar 

  • Eto K, Asada T, Arima K, Makifuchi T, Kimura H (2002) Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem Biophys Res Commun 293(5):1485–1488

    CAS  PubMed  Google Scholar 

  • Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E, Scazufca M (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366(9503):2112–2117

    PubMed Central  PubMed  Google Scholar 

  • Floyd RA, Carney JM (1992) Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol 32(Suppl):S22–S27

    CAS  PubMed  Google Scholar 

  • Gangarossa G, Laffray S, Bourinet E, Valjent E (2014) T-type calcium channel Cav3.2 deficient mice show elevated anxiety, impaired memory and reduced sensitivity to psychostimulants. Front Behav Neurosci 8:92

    PubMed Central  PubMed  Google Scholar 

  • Garzon J, Rodriguez-Munoz M, Sanchez-Blazquez P (2012) Direct association of Mu-opioid and NMDA glutamate receptors supports their cross-regulation: molecular implications for opioid tolerance. Curr Drug Abuse Rev 5(3):199–226

    CAS  PubMed  Google Scholar 

  • Giuliani D, Ottani A, Zaffe D, Galantucci M, Strinati F, Lodi R, Guarini S (2013) Hydrogen sulfide slows down progression of experimental Alzheimer’s disease by targeting multiple pathophysiological mechanisms. Neurobiol Learn Mem 104:82–91

    CAS  PubMed  Google Scholar 

  • Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science 314(5800):777–781

    CAS  PubMed  Google Scholar 

  • Gong Q-H, Wang Q, Pan L-L, Liu X-H, Huang H, Zhu Y-Z (2010) Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: a pro-inflammatory pathway in rats. Pharmacol Biochem Behav 96(1):52–58

    CAS  PubMed  Google Scholar 

  • Gong QH, Wang Q, Pan LL, Liu XH, Xin H, Zhu YZ (2011) S-propargyl-cysteine, a novel hydrogen sulfide-modulated agent, attenuates lipopolysaccharide-induced spatial learning and memory impairment: involvement of TNF signaling and NF-kappaB pathway in rats. Brain Behav Immun 25(1):110–119

    CAS  PubMed  Google Scholar 

  • Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, Launer LJ, Laurent S, Lopez OL, Nyenhuis D, Petersen RC, Schneider JA, Tzourio C, Arnett DK, Bennett DA, Chui HC, Higashida RT, Lindquist R, Nilsson PM, Roman GC, Sellke FW, Seshadri S (2011) Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke 42(9):2672–2713

    PubMed Central  PubMed  Google Scholar 

  • Guidotti TL (1996) Hydrogen sulphide. Occup Med (Lond) 46(5):367–371

    CAS  Google Scholar 

  • Guidotti TL (2010) Hydrogen sulfide: advances in understanding human toxicity. Int J Toxicol 29(6):569–581

    CAS  PubMed  Google Scholar 

  • Guo W, Kan JT, Cheng ZY, Chen JF, Shen YQ, Xu J, Wu D, Zhu YZ (2012) Hydrogen sulfide as an endogenous modulator in mitochondria and mitochondria dysfunction. Oxid Med Cell Longev 2012:878052

    PubMed Central  PubMed  Google Scholar 

  • He XL, Yan N, Zhang H, Qi YW, Zhu LJ, Liu MJ, Yan Y (2014) Hydrogen sulfide improves spatial memory impairment and decreases production of Abeta in APP/PS1 transgenic mice. Neurochem Int 67:1–8

    CAS  PubMed  Google Scholar 

  • Hegde A, Bhatia M (2011) Hydrogen sulfide in inflammation: friend or foe? Inflamm Allergy Drug Targets 10(2):118–122

    CAS  PubMed  Google Scholar 

  • Hildebrandt TM, Grieshaber MK (2008) Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J 275(13):3352–3361

    CAS  PubMed  Google Scholar 

  • Hu LF, Wong PT, Moore PK, Bian JS (2007) Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia. J Neurochem 100(4):1121–1128

    CAS  PubMed  Google Scholar 

  • Hu LF, Pan TT, Neo KL, Yong QC, Bian JS (2008) Cyclooxygenase-2 mediates the delayed cardioprotection induced by hydrogen sulfide preconditioning in isolated rat cardiomyocytes. Pflugers Arch 455(6):971–978

    CAS  PubMed  Google Scholar 

  • Hu LF, Lu M, Wu ZY, Wong PT, Bian JS (2009) Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function. Mol Pharmacol 75(1):27–34

    CAS  PubMed  Google Scholar 

  • Hu LF, Lu M, Tiong CX, Dawe GS, Hu G, Bian JS (2010) Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell 9(2):135–146

    CAS  PubMed  Google Scholar 

  • Hu LF, Lu M, Hon Wong PT, Bian JS (2011) Hydrogen sulfide: neurophysiology and neuropathology. Antioxid Redox Signal 15(2):405–419

    CAS  PubMed  Google Scholar 

  • Iadecola C (2013) The pathobiology of vascular dementia. Neuron 80(4):844–866

    CAS  PubMed  Google Scholar 

  • Ishigami M, Hiraki K, Umemura K, Ogasawara Y, Ishii K, Kimura H (2009) A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid Redox Signal 11(2):205–214

    CAS  PubMed  Google Scholar 

  • Jiang LH, Wang J, Wei XL, Liang QY, Cheng TT (2012) Exogenous sodium hydrosulfide can attenuate naloxone-precipitated withdrawal syndromes and affect cAMP signaling pathway in heroin-dependent rat’s nucleus accumbens. Eur Rev Med Pharmacol Sci 16(14):1974–1982

    PubMed  Google Scholar 

  • Kabil O, Banerjee R (2010) Redox biochemistry of hydrogen sulfide. J Biol Chem 285(29):21903–21907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kabil O, Banerjee R (2014) Enzymology of H2S biogenesis, decay and signaling. Antioxid Redox Signal 20(5):770–782

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294(5544):1030–1038

    CAS  PubMed  Google Scholar 

  • Kida K, Yamada M, Tokuda K, Marutani E, Kakinohana M, Kaneki M, Ichinose F (2011) Inhaled hydrogen sulfide prevents neurodegeneration and movement disorder in a mouse model of Parkinson’s disease. Antioxid Redox Signal 15(2):343–352

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kimura H (2011) Hydrogen sulfide: its production, release and functions. Amino Acids 41(1):113–121

    CAS  PubMed  Google Scholar 

  • Kimura H (2014) Production and physiological effects of hydrogen sulfide. Antioxid Redox Signal 20(5):783–793

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18(10):1165–1167

    CAS  PubMed  Google Scholar 

  • Kimura Y, Dargusch R, Schubert D, Kimura H (2006) Hydrogen sulfide protects HT22 neuronal cells from oxidative stress. Antioxid Redox Signal 8(3-4):661–670

    CAS  PubMed  Google Scholar 

  • Kimura Y, Goto Y, Kimura H (2010) Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal 12(1):1–13

    CAS  PubMed  Google Scholar 

  • Kohn C, Dubrovska G, Huang Y, Gollasch M (2012) Hydrogen sulfide: potent regulator of vascular tone and stimulator of angiogenesis. Int J Biomed Sci 8(2):81–86

    PubMed Central  PubMed  Google Scholar 

  • Lambert TW, Goodwin VM, Stefani D, Strosher L (2006) Hydrogen sulfide (H2S) and sour gas effects on the eye. A historical perspective. Sci Total Environ 367(1):1–22

    CAS  PubMed  Google Scholar 

  • Lee SW, Hu YS, Hu LF, Lu Q, Dawe GS, Moore PK, Wong PT, Bian JS (2006) Hydrogen sulphide regulates calcium homeostasis in microglial cells. Glia 54(2):116–124

    PubMed  Google Scholar 

  • Lee SW, Cheng Y, Moore PK, Bian J-S (2007) Hydrogen sulphide regulates intracellular pH in vascular smooth muscle cells. Biochem Biophys Res Commun 358(4):1142–1147

    CAS  PubMed  Google Scholar 

  • Lee M, Schwab C, Yu S, McGeer E, McGeer PL (2009) Astrocytes produce the antiinflammatory and neuroprotective agent hydrogen sulfide. Neurobiol Aging 30(10):1523–1534

    CAS  PubMed  Google Scholar 

  • Lee M, Tazzari V, Giustarini D, Rossi R, Sparatore A, Del Soldato P, McGeer E, McGeer PL (2010) Effects of hydrogen sulfide-releasing L-DOPA derivatives on glial activation: potential for treating Parkinson disease. J Biol Chem 285(23):17318–17328

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lim JJ, Liu YH, Khin ES, Bian JS (2008) Vasoconstrictive effect of hydrogen sulfide involves downregulation of cAMP in vascular smooth muscle cells. Am J Physiol Cell Physiol 295(5):C1261–C1270

    CAS  PubMed  Google Scholar 

  • Liu C, Wu J, Gu J, Xiong Z, Wang F, Wang J, Wang W, Chen J (2007) Baicalein improves cognitive deficits induced by chronic cerebral hypoperfusion in rats. Pharmacol Biochem Behav 86(3):423–430

    CAS  PubMed  Google Scholar 

  • Liu XQ, Liu XQ, Jiang P, Huang H, Yan Y (2008) Plasma levels of endogenous hydrogen sulfide and homocysteine in patients with Alzheimer’s disease and vascular dementia and the significance thereof. Zhonghua Yi Xue Za Zhi 88(32):2246–2249

    CAS  PubMed  Google Scholar 

  • Liu YH, Lu M, Hu LF, Wong PT, Webb GD, Bian JS (2012) Hydrogen sulfide in the mammalian cardiovascular system. Antioxid Redox Signal 17(1):141–185

    CAS  PubMed  Google Scholar 

  • Lu M, Hu LF, Hu G, Bian JS (2008) Hydrogen sulfide protects astrocytes against H(2)O(2)-induced neural injury via enhancing glutamate uptake. Free Radic Biol Med 45(12):1705–1713

    CAS  PubMed  Google Scholar 

  • Malaguarnera L, Motta M, Di Rosa M, Anzaldi M, Malaguarnera M (2006) Interleukin-18 and transforming growth factor-beta 1 plasma levels in Alzheimer’s disease and vascular dementia. Neuropathology 26(4):307–312

    PubMed  Google Scholar 

  • Mallmann RT, Elgueta C, Sleman F, Castonguay J, Wilmes T, van den Maagdenberg A, Klugbauer N (2013) Ablation of Ca(V)2.1 voltage-gated Ca(2)(+) channels in mouse forebrain generates multiple cognitive impairments. PLoS One 8(10), e78598

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mark G, Naumov S, von Sonntag C (2011) The reaction of ozone with bisulfide (HS−) in aqueous solution – mechanistic aspects. Ozone Sci Eng 33(1):37–41

    CAS  Google Scholar 

  • Mikami Y, Shibuya N, Kimura Y, Nagahara N, Yamada M, Kimura H (2011) Hydrogen sulfide protects the retina from light-induced degeneration by the modulation of Ca2+ influx. J Biol Chem 286(45):39379–39386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Milby TH, Baselt RC (1999) Hydrogen sulfide poisoning: clarification of some controversial issues. Am J Ind Med 35(2):192–195

    CAS  PubMed  Google Scholar 

  • Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory. Neuron 20(3):445–468

    CAS  PubMed  Google Scholar 

  • Morrison LD, Smith DD, Kish SJ (1996) Brain S-adenosylmethionine levels are severely decreased in Alzheimer’s disease. J Neurochem 67(3):1328–1331

    CAS  PubMed  Google Scholar 

  • Nagai Y, Tsugane M, Oka J, Kimura H (2004) Hydrogen sulfide induces calcium waves in astrocytes. FASEB J 18(3):557–559

    CAS  PubMed  Google Scholar 

  • Nagpure BV, Bian JS (2014) Hydrogen sulfide inhibits A2A adenosine receptor agonist induced beta-amyloid production in SH-SY5Y neuroblastoma cells via a cAMP dependent pathway. PLoS One 9(2), e88508

    PubMed Central  PubMed  Google Scholar 

  • Nimmrich V, Ebert U (2009) Is Alzheimer’s disease a result of presynaptic failure? Synaptic dysfunctions induced by oligomeric beta-amyloid. Rev Neurosci 20(1):1–12

    CAS  PubMed  Google Scholar 

  • Nimmrich V, Grimm C, Draguhn A, Barghorn S, Lehmann A, Schoemaker H, Hillen H, Gross G, Ebert U, Bruehl C (2008) Amyloid beta oligomers (A beta(1-42) globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents. J Neurosci 28(4):788–797

    CAS  PubMed  Google Scholar 

  • O’Suilleabhain PE, Sung V, Hernandez C, Lacritz L, Dewey RB Jr, Bottiglieri T, Diaz-Arrastia R (2004) Elevated plasma homocysteine level in patients with Parkinson disease: motor, affective, and cognitive associations. Arch Neurol 61(6):865–868

    PubMed  Google Scholar 

  • Pan TT, Feng ZN, Lee SW, Moore PK, Bian JS (2006) Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes. J Mol Cell Cardiol 40(1):119–130

    CAS  PubMed  Google Scholar 

  • Polhemus DJ, Calvert JW, Butler J, Lefer DJ (2014) The cardioprotective actions of hydrogen sulfide in acute myocardial infarction and heart failure. Scientifica (Cairo) 2014:768607

    Google Scholar 

  • Prior MG, Sharma AK, Yong S, Lopez A (1988) Concentration-time interactions in hydrogen sulphide toxicity in rats. Can J Vet Res 52(3):375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nat Rev Neurol 7(3):137–152

    PubMed Central  PubMed  Google Scholar 

  • Robert K, Vialard F, Thiery E, Toyama K, Sinet PM, Janel N, London J (2003) Expression of the cystathionine beta synthase (CBS) gene during mouse development and immunolocalization in adult brain. J Histochem Cytochem 51(3):363–371

    CAS  PubMed  Google Scholar 

  • Ronk R, White MK (1985) Hydrogen sulfide and the probabilities of ‘inhalation’ through a tympanic membrane defect. J Occup Environ Med 27(5):337–340

    CAS  Google Scholar 

  • Sastre C, Baillif-Couniou V, Kintz P, Cirimele V, Bartoli C, Christia-Lotter M-A, Piercecchi-Marti M-D, Leonetti G, Pelissier-Alicot A-L (2013) Fatal accidental hydrogen sulfide poisoning: a domestic case. J Forensic Sci 58:S280–S284

    PubMed  Google Scholar 

  • Sekiguchi F, Miyamoto Y, Kanaoka D, Ide H, Yoshida S, Ohkubo T, Kawabata A (2014) Endogenous and exogenous hydrogen sulfide facilitates T-type calcium channel currents in Cav3.2-expressing HEK293 cells. Biochem Biophys Res Commun 445(1):225–229

    CAS  PubMed  Google Scholar 

  • Seoane A, Massey PV, Keen H, Bashir ZI, Brown MW (2009) L-type voltage-dependent calcium channel antagonists impair perirhinal long-term recognition memory and plasticity processes. J Neurosci 29(30):9534–9544

    CAS  PubMed  Google Scholar 

  • Shibuya N, Kimura H (2013) Production of hydrogen sulfide from d-cysteine and its therapeutic potential. Front Endocrinol (Lausanne) 4:87

    Google Scholar 

  • Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2009) 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11(4):703–714

    CAS  PubMed  Google Scholar 

  • Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R (2009) Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem 284(33):22457–22466

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sparatore A, Santus G, Giustarini D, Rossi R, Del Soldato P (2011) Therapeutic potential of new hydrogen sulfide-releasing hybrids. Expert Rev Clin Pharmacol 4(1):109–121

    CAS  PubMed  Google Scholar 

  • Stein A, Bailey SM (2013) Redox biology of hydrogen sulfide: implications for physiology, pathophysiology, and pharmacology. Redox Biol 1(1):32–39

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stephan BC, Brayne C (2008) Vascular factors and prevention of dementia. Int Rev Psychiatry 20(4):344–356

    PubMed  Google Scholar 

  • Tang XQ, Yang CT, Chen J, Yin WL, Tian SW, Hu B, Feng JQ, Li YJ (2008) Effect of hydrogen sulphide on beta-amyloid-induced damage in PC12 cells. Clin Exp Pharmacol Physiol 35(2):180–186

    CAS  PubMed  Google Scholar 

  • Tang XQ, Shen XT, Huang YE, Chen RQ, Ren YK, Fang HR, Zhuang YY, Wang CY (2011) Inhibition of endogenous hydrogen sulfide generation is associated with homocysteine-induced neurotoxicity: role of ERK1/2 activation. J Mol Neurosci 45(1):60–67

    CAS  PubMed  Google Scholar 

  • Tang X-Q, Zhuang Y-Y, Zhang P, Fang H-R, Zhou C-F, Gu H-F, Zhang H, Wang C-Y (2013) Formaldehyde impairs learning and memory involving the disturbance of hydrogen sulfide generation in the hippocampus of rats. J Mol Neurosci 49(1):140–149

    CAS  PubMed  Google Scholar 

  • Tansy MF, Kendall FM, Fantasia J, Landin WE, Oberly R, Sherman W (1981) Acute and subchronic toxicity studies of rats exposed to vapors of methyl mercaptan and other reduced‐sulfur compounds. J Toxicol Environ Health 8(1-2):71–88

    CAS  PubMed  Google Scholar 

  • Thompson AD, Scaglione KM, Prensner J, Gillies AT, Chinnaiyan A, Paulson HL, Jinwal UK, Dickey CA, Gestwicki JE (2012) Analysis of the tau-associated proteome reveals that exchange of Hsp70 for Hsp90 is involved in tau degradation. ACS Chem Biol 7(10):1677–1686

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tiong CX, Lu M, Bian JS (2010) Protective effect of hydrogen sulphide against 6-OHDA-induced cell injury in SH-SY5Y cells involves PKC/PI3K/Akt pathway. Br J Pharmacol 161(2):467–480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Truong DH, Eghbal MA, Hindmarsh W, Roth SH, O’Brien PJ (2006) Molecular mechanisms of hydrogen sulfide toxicity. Drug Metab Rev 38(4):733–744

    CAS  PubMed  Google Scholar 

  • Turner RM, Fairhurst S, Britain G (1990) Toxicology of substances in relation to major hazards: hydrogen sulphide. HM Stationery Office, London

    Google Scholar 

  • Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1):65–74

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Kampen EJ, Zijlstra WG (1983) Spectrophotometry of hemoglobin and hemoglobin derivatives. Adv Clin Chem 23:199–257

    PubMed  Google Scholar 

  • Vorobets VS, Kovach SK, Kolbasov GY (2002) Distribution of Ion species and formation of ion pairs in concentrated polysulfide solutions in photoelectrochemical transducers. Rus J Appl Chem 75(2):229–234

    CAS  Google Scholar 

  • Voss K, Combs B, Patterson KR, Binder LI, Gamblin TC (2012) Hsp70 alters tau function and aggregation in an isoform specific manner. Biochemistry 51(4):888–898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang D (1989) A review of 152 cases of acute poisoning of hydrogen sulfide. Zhonghua Yi Xue Za Zhi 23(6):330–332

    CAS  Google Scholar 

  • Warenycia MW, Steele JA, Karpinski E, Reiffenstein RJ (1989) Hydrogen sulfide in combination with taurine or cysteic acid reversibly abolishes sodium currents in neuroblastoma cells. Neurotoxicology 10(2):191–199

    CAS  PubMed  Google Scholar 

  • Whiteman M, Winyard PG (2011) Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Rev Clin Pharmacol 4(1):13–32

    CAS  PubMed  Google Scholar 

  • Whiteman M, Armstrong JS, Chu SH, Jia-Ling S, Wong BS, Cheung NS, Halliwell B, Moore PK (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J Neurochem 90(3):765–768

    CAS  PubMed  Google Scholar 

  • Xie L, Tiong CX, Bian J-S (2012) Hydrogen sulfide protects SH-SY5Y cells against 6-hydroxydopamine-induced endoplasmic reticulum stress. Am J Physiol Cell Physiol 303(1):C81–C91

    CAS  PubMed  Google Scholar 

  • Xie L, Hu LF, Teo XQ, Tiong CX, Tazzari V, Sparatore A, Del Soldato P, Dawe GS, Bian JS (2013) Therapeutic effect of hydrogen sulfide-releasing L-Dopa derivative ACS84 on 6-OHDA-induced Parkinson’s disease rat model. PLoS One 8(4), e60200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xuan A, Long D, Li J, Ji W, Zhang M, Hong L, Liu J (2012) Hydrogen sulfide attenuates spatial memory impairment and hippocampal neuroinflammation in beta-amyloid rat model of Alzheimer’s disease. J Neuroinflammation 9:202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamanishi T, Tuboi S (1981) The mechanism of the L-cystine cleavage reaction catalyzed by rat liver gamma-cystathionase. J Biochem 89(6):1913–1921

    CAS  PubMed  Google Scholar 

  • Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322(5901):587–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang HY, Wu ZY, Wood M, Whiteman M, Bian JS (2013) Hydrogen sulfide attenuates opioid dependence by suppression of adenylate cyclase/cAMP pathway. Antioxid Redox Signal 20(1):31–41

    PubMed  Google Scholar 

  • Yin WL, He JQ, Hu B, Jiang ZS, Tang XQ (2009) Hydrogen sulfide inhibits MPP(+)-induced apoptosis in PC12 cells. Life Sci 85(7-8):269–275

    CAS  PubMed  Google Scholar 

  • Yong QC, Choo CH, Tan BH, Low CM, Bian JS (2010) Effect of hydrogen sulfide on intracellular calcium homeostasis in neuronal cells. Neurochem Int 56(3):508–515

    CAS  PubMed  Google Scholar 

  • Zhang LM, Jiang CX, Liu DW (2009) Hydrogen sulfide attenuates neuronal injury induced by vascular dementia via inhibiting apoptosis in rats. Neurochem Res 34(11):1984–1992

    CAS  PubMed  Google Scholar 

  • Zhang H, Gao Y, Zhao F, Dai Z, Meng T, Tu S, Yan Y (2011) Hydrogen sulfide reduces mRNA and protein levels of beta-site amyloid precursor protein cleaving enzyme 1 in PC12 cells. Neurochem Int 58(2):169–175

    CAS  PubMed  Google Scholar 

  • Zhao Y, Biggs TD, Xian M (2014) Hydrogen sulfide (HS) releasing agents: chemistry and biological applications. Chem Commun (Camb)

    Google Scholar 

  • Zhou X, Cao Y, Ao G, Hu L, Liu H, Wu J, Wang X, Jin M, Zheng S, Zhen X, Alkayed NJ, Jia J, Cheng J (2014) CaMKKbeta-dependent activation of AMP-activated protein kinase is critical to suppressive effects of hydrogen sulfide on neuroinflammation. Antioxid Redox Signal 21(12):1741–1758

    CAS  PubMed  Google Scholar 

  • Zhu L, Chen X, He X, Qi Y, Yan Y (2014) Effect of exogenous hydrogen sulfide on BACE-1 enzyme expression and beta-amyloid peptide metabolism in high-glucose primary neuronal culture. Nan Fang Yi Ke Da Xue Xue Bao 34(4):504–506, 510

    PubMed  Google Scholar 

  • Zoccolella S, dell’Aquila C, Specchio LM, Logroscino G, Lamberti P (2010) Elevated homocysteine levels in Parkinson’s disease: is there anything besides L-dopa treatment? Curr Med Chem 17(3):213–221

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by research grants from National University Health System (NUHS B2B research grant-NUHSRO/2011/012/STB/B2B-08) and National Kidney Foundation (NKFRC/2011/01/04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Song Bian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nagpure, B.V., Bian, JS. (2015). Brain, Learning, and Memory: Role of H2S in Neurodegenerative Diseases. In: Moore, P., Whiteman, M. (eds) Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide. Handbook of Experimental Pharmacology, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-18144-8_10

Download citation

Publish with us

Policies and ethics