Skip to main content

Depth Recovery with Face Priors

  • Conference paper
  • First Online:
  • 2333 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9006))

Abstract

Existing depth recovery methods for commodity RGB-D sensors primarily rely on low-level information for repairing the measured depth estimates. However, as the distance of the scene from the camera increases, the recovered depth estimates become increasingly unreliable. The human face is often a primary subject in the captured RGB-D data in applications such as the video conference. In this paper we propose to incorporate face priors extracted from a general sparse 3D face model into the depth recovery process. In particular, we propose a joint optimization framework that consists of two main steps: deforming the face model for better alignment and applying face priors for improved depth recovery. The two main steps are iteratively and alternatively operated so as to help each other. Evaluations on benchmark datasets demonstrate that the proposed method with face priors significantly outperforms the baseline method that does not use face priors, with up to 15.1 % improvement in depth recovery quality and up to 22.3 % in registration accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    More results can be found at http://www.ntu.edu.sg/home/asjfcai/.

References

  1. Mutto, C., Zanuttigh, P., Cortelazzo, G.: Microsoft Kinect\(^{{\rm TM}}\) range camera. In: Mutto, C., Zanuttigh, P., Cortelazzo, G. (eds.) Time-of-Flight Cameras and Microsoft Kinect\(^{{\rm TM}}\). SpringerBriefs in Electrical and Computer Engineering, pp. 33–47. Springer, Boston (2012)

    Chapter  Google Scholar 

  2. Maimone, A., Fuchs, H.: Encumbrance-free telepresence system with real-time 3D capture and display using commodity depth cameras. In: International Symposium Mixed Augmented Reality (ISMAR), pp. 137–146. IEEE, Basel, Switzerland (2011)

    Google Scholar 

  3. Kuster, C., Popa, T., Zach, C., Gotsman, C., Gross, M.: Freecam: a hybrid camera system for interactive free-viewpoint video. In: Proceedings of the Vision, Modeling, and Vision (VMV), Berlin, Germany, pp. 17–24 (2011)

    Google Scholar 

  4. Zhang, C., Cai, Q., Chou, P., Zhang, Z., Martin-Brualla, R.: Viewport: a distributed, immersive teleconferencing system with infrared dot pattern. IEEE Multimedia 20, 17–27 (2013)

    Article  Google Scholar 

  5. Min, D., Lu, J., Do, M.: Depth video enhancement based on weighted mode filtering. IEEE Trans. Image Process. 21, 1176–1190 (2012)

    Article  MathSciNet  Google Scholar 

  6. Richardt, C., Stoll, C., Dodgson, N.A., Seidel, H.P., Theobalt, C.: Coherent spatiotemporal filtering, upsampling and rendering of RGBZ videos. Comp. Graph. Forum 31, 247–256 (2012)

    Article  Google Scholar 

  7. Yang, J., Ye, X., Li, K., Hou, C.: Depth recovery using an adaptive color-guided auto-regressive model. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 158–171. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Zhao, M., Tan, F., Fu, C.W., Tang, C.K., Cai, J., Cham, T.J.: High-quality Kinect depth filtering for real-time 3D telepresence. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2013)

    Google Scholar 

  9. Chen, C., Cai, J., Zheng, J., Cham, T.J., Shi, G.: A color-guided, region-adaptive and depth-selective unified framework for Kinect depth recovery. In: International Workshop Multimedia Signal Processing (MMSP), pp. 8–12. IEEE, Pula, Italy (2013)

    Google Scholar 

  10. Qi, F., Han, J., Wang, P., Shi, G., Li, F.: Structure guided fusion for depth map inpainting. Pattern Recogn. Lett. 34, 70–76 (2013)

    Article  Google Scholar 

  11. Li, H., Yu, J., Ye, Y., Bregler, C.: Realtime facial animation with on-the-fly correctives. ACM Trans. Graph. 32, 42:1–42:10 (2013)

    Google Scholar 

  12. Cao, C., Weng, Y., Zhou, S., Tong, Y., Zhou, K.: FaceWarehouse: a 3D facial expression database for visual computing. IEEE Trans. Vis. Comput. Graph. 20, 413–425 (2014)

    Article  Google Scholar 

  13. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: International Conference on Computer Vision (ICCV), pp. 839–846. IEEE, Bombay, India (1998)

    Google Scholar 

  14. Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., Toyama, K.: Digital photography with flash and no-flash image pairs. ACM Trans. Graph. 23, 664–672 (2004)

    Article  Google Scholar 

  15. Lai, P., Tian, D., Lopez, P.: Depth map processing with iterative joint multilateral filtering. In: Picture Coding Symposium (PCS), pp. 9–12. IEEE, Nagoya, Japan (2010)

    Google Scholar 

  16. Khoshelham, K., Elberink, S.O.: Accuracy and resolution of Kinect depth data for indoor mapping applications. Sensors 12, 1437–1454 (2012)

    Article  Google Scholar 

  17. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models - their training and applications. Comput. Vis. Image Underst. 61, 39–59 (1995)

    Article  Google Scholar 

  18. Cootes, T., Edwards, G., Taylor, C.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23, 681–684 (2001)

    Article  Google Scholar 

  19. Matthews, I., Baker, S.: Active appearance models revisited. Int. J. Comput. Vis. 60, 135–164 (2004)

    Article  Google Scholar 

  20. Baltruaitis, T., Robinson, P., Matthews, I., Morency, L.P.: 3D constrained local model for rigid and non-rigid facial tracking. In: CVPR, pp. 2610–2617 (2012)

    Google Scholar 

  21. Wang, H., Dopfer, A., Wang, C.: 3D AAM based face alignment under wide angular variations using 2D and 3D data. In: ICRA (2012)

    Google Scholar 

  22. Cai, Q., Gallup, D., Zhang, C., Zhang, Z.: 3D deformable face tracking with a commodity depth camera. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 229–242. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Ahlberg, J.: Face and facial feature tracking using the active appearance algorithm. In: 2nd European Workshop on Advanced Video-Based Surveillance Systems (AVBS), London, UK, pp. 89–93 (2001)

    Google Scholar 

  24. DeCarlo, D., Metaxas, D.: Optical flow constraints on deformable models with applications to face tracking. Int. J. Comput. Vis. 38, 99–127 (2000)

    Article  MATH  Google Scholar 

  25. Dornaika, F., Ahlberg, J.: Fast and reliable active appearance model search for 3D face tracking. IEEE Trans. Syst. Man Cybern. 34, 1838–1853 (2004)

    Article  Google Scholar 

  26. Dornaika, F., Orozco, J.: Real-time 3D face and facial feature tracking. J. Real-time Image Proc. 2, 35–44 (2007)

    Article  Google Scholar 

  27. Orozco, J., Rudovic, O., Gonzàlez, J., Pantic, M.: Hierarchical on-line appearance-based tracking for 3D head pose, eyebrows, lips, eyelids and irises. Image Vis. Comput. 31, 322–340 (2013)

    Article  Google Scholar 

  28. Ahlberg, J.: An updated parameterized face. Technical report, Image Coding Group. Department of Electrical Engineering, Linkoping University (2001)

    Google Scholar 

  29. Pham, H.X., Pavlovic, V.: Hybrid on-line 3D face and facial actions tracking in RGBD video sequences. In: Proceedings of the International Conference on Pattern Recognition (ICPR) (2014)

    Google Scholar 

  30. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR, pp. I-511–I-518 (2001)

    Google Scholar 

  31. Saragih, J.M., Lucey, S., Cohn, J.F.: Deformable model fitting by regularized landmark mean-shift. Int. J. Comput. Vis. 91, 200–215 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 9, 698–700 (1987)

    Article  Google Scholar 

  33. Low, K.: Linear least-squares optimization for point-to-plane ICP surface registration. Technical report TR04-004, Department of Computer Science, University of North Carolina at Chapel Hill (2004)

    Google Scholar 

  34. Yin, L., Chen, X., Sun, Y., Worm, T., Reale, M.: A high-resolution 3D dynamic facial expression database. In: 8th IEEE International Conference on Automatic Face Gesture Recognition, pp. 1–6. IEEE (2008)

    Google Scholar 

Download references

Acknowledgement

This research, which is carried out at BeingThere Centre, is mainly supported by the Singapore National Research Foundation under its International Research Centre @ Singapore Funding Initiative and administered by the IDM Programme Office. This research is also partially supported by the 111 Project (No. B07048), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfei Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, C., Pham, H.X., Pavlovic, V., Cai, J., Shi, G. (2015). Depth Recovery with Face Priors. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9006. Springer, Cham. https://doi.org/10.1007/978-3-319-16817-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16817-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16816-6

  • Online ISBN: 978-3-319-16817-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics