Skip to main content

Efficient Multi-robot Motion Planning for Unlabeled Discs in Simple Polygons

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 107))

Abstract

We consider the following motion-planning problem: we are given \(m\) unit discs in a simple polygon with \(n\) vertices, each at their own start position, and we want to move the discs to a given set of \(m\) target positions. Contrary to the standard (labeled) version of the problem, each disc is allowed to be moved to any target position, as long as in the end every target position is occupied. We show that this unlabeled version of the problem can be solved in \(O\left( n\log n+mn+m^2\right) \) time, assuming that the start and target positions are at least some minimal distance from each other. This is in sharp contrast to the standard (labeled) and more general multi-robot motion planning problem for discs moving in a simple polygon, which is known to be strongly np-hard.

The work has been carried out in part during Aviv Adler’s visit to Tel Aviv University, enabled by the generous Melvin M. Goldberg Fellowship for Research in Israel.

Work by D.H. and K.S. has been supported in part by the 7th Framework Programme for Research of the European Commission, under FET-Open grant number 255827 (CGL—Computational Geometry Learning), by the Israel Science Foundation (grant no. 1102/11), by the German-Israeli Foundation (grant no. 1150-82.6/2011), and by the Hermann Minkowski–Minerva Center for Geometry at Tel Aviv University.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aronov, B., de Berg, M., van der Stappen, A.F., Švestka, P., Vleugels, J.: Motion planning for multiple robots. Discret. Comput. Geom. 22(4), 505–525 (1999)

    Article  MATH  Google Scholar 

  2. Bereg, S., Dumitrescu, A., Pach, J.: Sliding disks in the plane. Int. J. Comput. Geom. Appl. 18(5), 373–387 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dumitrescu, A., Jiang, M.: On reconfiguration of disks in the plane and related problems. Comput. Geom.: Theory Appl. 46(3), 191–202 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Goldreich, O.: Shortest move-sequence in the generalized 15-puzzle is NP-hard. Manuscript, Laboratory for Computer Science, MIT 1 (1984)

    Google Scholar 

  5. Goraly, G., Hassin, R.: Multi-color pebble motion on graphs. Algorithmica 58(3), 610–636 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theor. Comput. Sci. 343(1–2), 72–96 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hirsch, S., Halperin, D.: Hybrid motion planning: coordinating two discs moving among polygonal obstacles in the plane. In: Workshop on the Algorithmic Foundations of Robotics (WAFR), pp. 239–255. Springer, New York (2002)

    Google Scholar 

  8. Hopcroft, J.E., Schwartz, J.T., Sharir, M.: On the complexity of motion planning for multiple independent objects; PSPACE-hardness of the warehouseman’s problem. Int. J. Robot. Res. 3(4), 76–88 (1984)

    Article  Google Scholar 

  9. Kavraki, L.E., Švestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  10. Kedem, K., Livne, R., Pach, J., Sharir, M.: On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discret. Comput. Geom. 1, 59–70 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kloder, S., Hutchinson, S.: Path planning for permutation-invariant multi-robot formations. In: ICRA, pp. 1797–1802 (2005)

    Google Scholar 

  12. Kornhauser, D.: Coordinating pebble motion on graphs, the diameter of permutation groups, and applications. M.Sc. thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (1984)

    Google Scholar 

  13. Krontiris, A., Luna, R., Bekris, K.E.: From feasibility tests to path planners for multi-agent pathfinding. In: Symposium on Combinatorial Search (2013)

    Google Scholar 

  14. Kuffner, J.J., Lavalle, S.M.: RRT-connect: an efficient approach to single-query path planning. In: International Conference on Robotics and Automation (ICRA), pp. 995–1001 (2000)

    Google Scholar 

  15. Papadimitriou, C.H., Raghavan, P., Sudan, M., Tamaki, H.: Motion planning on a graph. In: Foundations of Computer Science, pp. 511–520 (1994)

    Google Scholar 

  16. Salzman, O., Hemmer, M., Halperin, D.: On the power of manifold samples in exploring configuration spaces and the dimensionality of narrow passages to appear, Workshop on the Algorithmic Foundations of Robotics (WAFR) (2012)

    Google Scholar 

  17. Sanchez, G., Latombe, J.C.: Using a PRM planner to compare centralized and decoupled planning for multi-robot systems. In: International Conference on Robotics and Automation (ICRA) (2002)

    Google Scholar 

  18. Schwartz, J.T., Sharir, M.: On the piano movers problem: II. General techniques for computing topological properties of real algebraic manifolds. Adv. Appl. Math. 4(3), 298–351 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schwartz, J.T., Sharir, M.: On the piano movers problem: III. Coordinating the motion of several independent bodies. Int. J. Robot. Res. 2(3), 46–75 (1983)

    Article  MathSciNet  Google Scholar 

  20. Sharir, M., Sifrony, S.: Coordinated motion planning for two independent robots. Ann. Math. Artif. Intell. 3(1), 107–130 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Solovey, K., Halperin, D.: \(k\)-color multi-robot motion planning. Int. J. Robot. Res. (2013, in press (already appeared on-line))

    Google Scholar 

  22. Solovey, K., Salzman, O., Halperin, D.: Finding a needle in an exponential haystack: discrete RRT for exploration of implicit roadmaps in multi-robot motion planning. CoRR 1305.2889 (2013)

  23. Spirakis, P.G., Yap, C.K.: Strong NP-hardness of moving many discs. Inf. Process. Lett. 19(1), 55–59 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  24. Švestka, P., Overmars, M.H.: Coordinated path planning for multiple robots. Robot. Auton. Syst. 23, 125–152 (1998)

    Article  Google Scholar 

  25. Turpin, M., Michael, N., Kumar, V.: Concurrent assignment and planning of trajectories for large teams of interchangeable robots. In: International Conference on Robotics and Automation (ICRA), pp. 842–848 (2013)

    Google Scholar 

  26. van den Berg, J., Snoeyink, J., Lin, M.C., Manocha, D.: Centralized path planning for multiple robots: optimal decoupling into sequential plans. In: Robotics: Science and Systems (RSS) (2009)

    Google Scholar 

  27. Wagner, G., Choset, H.: M*: A complete multirobot path planning algorithm with performance bounds. In: International Conference on Intelligent Robots and Systems (IROS), pp. 3260–3267 (2011)

    Google Scholar 

  28. Wagner, G., Kang, M., Choset, H.: Probabilistic path planning for multiple robots with subdimensional expansion. In: International Conference on Robotics and Automation (ICRA), pp. 2886–2892 (2012)

    Google Scholar 

  29. Yap, C.K.: Coordinating the motion of several discs. Technical report, Courant Institute of Mathematical Sciences, Michigan State University, New York (1984)

    Google Scholar 

  30. Yu, J., LaValle, S.M.: Distance optimal formation control on graphs with a tight convergence time guarantee. In: IEEE International Conference on Decision and Control, pp. 4023–4028 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiril Solovey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Adler, A., de Berg, M., Halperin, D., Solovey, K. (2015). Efficient Multi-robot Motion Planning for Unlabeled Discs in Simple Polygons. In: Akin, H., Amato, N., Isler, V., van der Stappen, A. (eds) Algorithmic Foundations of Robotics XI. Springer Tracts in Advanced Robotics, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-16595-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16595-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16594-3

  • Online ISBN: 978-3-319-16595-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics