Skip to main content

An Optimality Theory Based Proximity Measure for Evolutionary Multi-Objective and Many-Objective Optimization

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9019))

Included in the following conference series:

Abstract

Evolutionary multi- and many-objective optimization (EMO) methods attempt to find a set of Pareto-optimal solutions, instead of a single optimal solution. To evaluate these algorithms, performance metrics either require the knowledge of the true Pareto-optimal solutions or, are ad-hoc and heuristic based. In this paper, we suggest a KKT proximity measure (KKTPM) that can provide an estimate of the proximity of a set of trade-off solutions from the true Pareto-optimal solutions. Besides theoretical results, the proposed KKT proximity measure is computed for iteration-wise trade-off solutions obtained from specific EMO algorithms on two, three, five and 10-objective optimization problems. Results amply indicate the usefulness of the proposed KKTPM as a termination criterion for an EMO algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreani, R., Haeser, G., Martinez, J.M.: On sequential optimality conditions for smooth constrained optimization. Optimization 60(5), 627–641 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bader, J., Deb, K., Zitzler, E.: Faster hypervolume-based search using Monte Carlo sampling. In: Proceedings of Multiple Criteria Decision Making (MCDM 2008). LNEMS, vol. 634, pp. 313–326. Springer, Heidelberg (2010)

    Google Scholar 

  3. Bector, C.R., Chandra, S., Dutta, J.: Principles of Optimization Theory. Narosa, New Delhi (2005)

    Google Scholar 

  4. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  5. Deb, K.: Scope of stationary multi-objective evolutionary optimization: A case study on a hydro-thermal power dispatch problem. Journal of Global Optimization 41(4), 479–515 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Deb, K., Abouhawwash, M.: An optimality theory based proximity measure for set based multi-objective optimization. COIN Report Number 2014015. Electrical and Computer Engineering, Michigan State University, East Lansing, USA (2014)

    Google Scholar 

  7. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  8. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, Part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation 18(4), 577–601 (2014)

    Article  Google Scholar 

  9. Deb, K., Tiwari, R., Dixit, M., Dutta, J.: Finding trade-off solutions close to KKT points using evolutionary multi-objective optimization. In: Proceedings of the Congress on Evolutionary Computation (CEC 2007), pp. 2109–2116. IEEE Press, Piscatway (2007)

    Google Scholar 

  10. Dutta, J., Deb, K., Tulshyan, R., Arora, R.: Approximate KKT points and a proximity measure for termination. Journal of Global Optimization 56(4), 1463–1499 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  12. Haeser, G., Schuverdt, M.L.: Approximate KKT conditions for variational inequality problems. Optimization Online (2009)

    Google Scholar 

  13. Manoharan, P.S., Kannan, P.S., Baskar, S., Iruthayarajan, M.W.: Evolutionary algorithm solution and kkt based optimality verification to multi-area economic dispatch. Electrical Power and Energy Systems 31, 365–373 (2009)

    Article  Google Scholar 

  14. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)

    MATH  Google Scholar 

  15. Rockafellar, R.T.: Convex Analysis. Princeton University Press (1996)

    Google Scholar 

  16. Tulshyan, R., Arora, R., Deb, K., Dutta, J.: Investigating ea solutions for approximate KKT conditions for smooth problems. In: Proc. of Genetic and Evolutionary Algorithms Conference (GECCO 2010), pp. 689–696. ACM Press (2010)

    Google Scholar 

  17. While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Trans. on Evolutionary Computation 10(1), 29–38 (2006)

    Article  Google Scholar 

  18. Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making Theory and Applications, pp. 468–486. Springer, Berlin (1980)

    Chapter  Google Scholar 

  19. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. Journal 8(2), 125–148 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyanmoy Deb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Deb, K., Abouhawwash, M., Dutta, J. (2015). An Optimality Theory Based Proximity Measure for Evolutionary Multi-Objective and Many-Objective Optimization. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C. (eds) Evolutionary Multi-Criterion Optimization. EMO 2015. Lecture Notes in Computer Science(), vol 9019. Springer, Cham. https://doi.org/10.1007/978-3-319-15892-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15892-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15891-4

  • Online ISBN: 978-3-319-15892-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics