Skip to main content

The Influence of Differential Diffusion in Turbulent Oxygen Enhanced Methane Flames

  • Conference paper
  • First Online:
Direct and Large-Eddy Simulation IX

Part of the book series: ERCOFTAC Series ((ERCO,volume 20))

  • 5577 Accesses

Abstract

For conventional combustion processes one of the most common oxidizers is air, mainly because it is cheap and readily available compared to other oxidizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baukal, C.E.: Oxygen-enhanced combustion. CRC. (1998)

    Google Scholar 

  2. Andersson, K., Johansson, R., Johnsson, F.: Thermal radiation in oxy-fuel flames. Int. J. Greenhouse Gas Control 5, S58–S65 (2011)

    Article  Google Scholar 

  3. Krishnan, S.S., Saini, M.K., Zheng, Y., Gore, J.P.: Radiation properties of oxygen-enhanced normal and inverse diffusion flames. J. Heat Transfer 134(2), 022701 (2012)

    Article  Google Scholar 

  4. Krishnamoorthy, G., Sami, M., Orsino, S., Perera, A., Shahnam, M., Huckaby, E.D.: Radiation modelling in oxy-fuel combustion scenarios. Int. J. Comput. Fluid Dyn. 24, 69–82 (2010)

    Article  MATH  Google Scholar 

  5. Sung, C.J., Law, C.K.: Dominant chemistry and physical factors affecting no formation and control in oxy-fuel burning. Proc. Combust. Inst. 27(1), 1411–1418 (1998)

    Article  Google Scholar 

  6. Cheng, Z., Wehrmeyer, J.A., Pitz, R.W.: Experimental and numerical studies of opposed jet oxygen-enhanced methane diffusion flames. Combust. Sci. Technol. 178(12), 2145–2163 (2006)

    Article  Google Scholar 

  7. Edge, P., Gubba, S.R., Ma, L., Porter, R., Pourkashanian, M., Williams, A.: LES modelling of air and oxy-fuel pulverised coal combustion-impact on flame properties. Proc. Combust. Inst. 33(2), 2709–2716 (2011)

    Article  Google Scholar 

  8. Kim, H.K., Kim, Y., Lee, S.M., Ahn, K.Y.: Studies on combustion characteristics and flame length of turbulent oxy-fuel flames. Energy Fuels 21(3), 1459–1467 (2007)

    Article  Google Scholar 

  9. Ern, A., Giovangigli, V.: Fast and accurate multicomponent transport property evaluation. J. Comput. Phys. 120, 105–116 (1995)

    Google Scholar 

  10. Hirschfelder, J.O., Bird, R.B., Curtiss, C.F.: The Molecular Theory of Gases and Liquids. Wiley, Hoboken (1954)

    Google Scholar 

  11. Kee, R.J., Dixon-Lewis, G., Warnatz, J., Coltrin, M.E., Miller, J.A., Moffat, H.K.: A Fortran computer code package for the evaluation of gas-phase, multicomponent transport properties. Sandia National Laboratories Report SAND86-8246B (1988)

    Google Scholar 

  12. Ern, A., Giovangigli EGLIB, V.: A general-purpose fortran library for multicomponent transport property evaluation. User manual version 3.4 (2004)

    Google Scholar 

  13. Laverdant, A.: Notice dutilisation du programme SIDER (PARCOMB3D). Technical Report RT 2/13635 DEFA, The French Aerospace Lab., ONERA (2008)

    Google Scholar 

  14. Thévenin, D., Behrendt, F., Maas, U., Przywara, B., Warnatz, J.: Development of a parallel direct simulation code to investigate reactive flows. Comput. Fluids 25(5), 485–496 (1996)

    Article  MATH  Google Scholar 

  15. Honein, A.E., Moin, P.: Higher entropy conservation and numerical stability of compressible turbulence simulations. J. Comput. Phys. 201(2), 531–545 (2004)

    Article  MATH  Google Scholar 

  16. Baum, M., Poinsot, T., Thévenin, D.: Accurate boundary-conditions for multicomponent reactive flows. J. Comput. Phys. 116(2), 247–261 (1995)

    Article  MATH  Google Scholar 

  17. Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. (ISSN 0021–9991), 101, 104–129 (1992)

    Google Scholar 

  18. Kraichnan, R.H.: Diffusion by a random velocity field. Phys. Fluids 13(1), 22–31 (1970)

    Article  MATH  Google Scholar 

  19. Lindstedt, R.P., Meyer, M.P.: A dimensionally reduced reaction mechanism for methanol oxidation. Proc. Combust. Inst. 29(1), 1395–1402 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Dietzsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dietzsch, F., Hasse, C., Fru, G., Thévenin, D. (2015). The Influence of Differential Diffusion in Turbulent Oxygen Enhanced Methane Flames. In: Fröhlich, J., Kuerten, H., Geurts, B., Armenio, V. (eds) Direct and Large-Eddy Simulation IX. ERCOFTAC Series, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-14448-1_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14448-1_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14447-4

  • Online ISBN: 978-3-319-14448-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics