Skip to main content

Learning Splines for Sparse Tomographic Reconstruction

  • Conference paper
Advances in Visual Computing (ISVC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8887))

Included in the following conference series:

Abstract

In a few-view or limited-angle computed tomography (CT), where the number of measurements is far fewer than image unknowns, the reconstruction task is an ill-posed problem. We present a spline-based sparse tomographic reconstruction algorithm where content-adaptive patch sparsity is integrated into the reconstruction process. The proposed method leverages closed-form Radon transforms of tensor-product B-splines and non-separable box splines to improve the accuracy of reconstruction afforded by higher order methods. The experiments show that enforcing patch-based sparsity, in terms of a learned dictionary, on higher order spline representations, outperforms existing methods that utilize pixel-basis for image representation as well as those employing wavelets as sparsifying transform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lustig, M., Donoho, D., Pauly, J.M.: Sparse mri: The application of compressed sensing for rapid mr imaging. Magnetic resonance in medicine 58, 1182–1195 (2007)

    Article  Google Scholar 

  2. Pan, X., Sidky, E.Y., Vannier, M.: Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Problems 25, 123009 (2009)

    Article  MathSciNet  Google Scholar 

  3. Shtok, J., Elad, M., Zibulevsky, M.: Sparsity-based sinogram denoising for low-dose computed tomography. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 569–572 (2011)

    Google Scholar 

  4. Natterer, F.: The mathematics of computerized tomography. In: Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2001)

    Google Scholar 

  5. Sidky, E.Y., Kao, C.M., Pan, X.: Accurate image reconstruction from few-views and limited-angle data in divergent-beam ct. Journal of X-ray Science and Technology 14, 119–139 (2006)

    Google Scholar 

  6. Rantala, M., Vanska, S., Jarvenpaa, S., Kalke, M., Lassas, M., Moberg, J., Siltanen, S.: Wavelet-based reconstruction for limited-angle x-ray tomography. IEEE Transactions on Medical Imaging 25, 210–217 (2006)

    Article  Google Scholar 

  7. Mirzargar, M., Sakhaee, E., Entezari, A.: A spline framework for sparse tomographic reconstruction. In: 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI), pp. 1272–1275 (2013)

    Google Scholar 

  8. Liao, H., Sapiro, G.: Sparse representations for limited data tomography. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2008, pp. 1375–1378 (2008)

    Google Scholar 

  9. Xu, Q., Yu, H., Mou, X., Zhang, L., Hsieh, J., Wang, G.: Low-dose x-ray ct reconstruction via dictionary learning. IEEE Trans. Med. Img. 31, 1682–1697 (2012)

    Article  Google Scholar 

  10. Meijering, E.: Quantitative evaluation of convolution-based methods for medical image interpolation. Med. Img. Ana. 5, 111–126 (2001)

    Article  Google Scholar 

  11. Thévenaz, P., Blu, T., Unser, M.: Interpolation revisited. IEEE Transactions on Medical Imaging 19, 739–758 (2000)

    Article  Google Scholar 

  12. Entezari, A., Nilchian, M., Unser, M.: A box spline calculus for the discretization of computed tomography reconstruction problems. IEEE Transactions on Medical Imaging 31, 1532–1541 (2012)

    Article  Google Scholar 

  13. De Boor, C., Höllig, K., Riemenschneider, S.: Box Splines. Applied Mathematical Sciences, vol. 98. Springer, New York (1993)

    Book  MATH  Google Scholar 

  14. Entezari, A., Unser, M.: A box spline calculus for computed tomography. In: IEEE International Symposium on Biomedical Imaging, pp. 600–603 (2010)

    Google Scholar 

  15. Smith, L.N., Elad, M.: Improving dictionary learning: Multiple dictionary updates and coefficient reuse. IEEE Signal Processing Letters 20, 79–82 (2013)

    Article  Google Scholar 

  16. Kolehmainen, V., Lassas, M., Niinimäki, K., Siltanen, S.: Sparsity-promoting bayesian inversion. Inverse Problems 28, 025005 (2012)

    Google Scholar 

  17. Ravishankar, S., Bresler, Y.: Mr image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. on Med. Img. 30, 1028–1041 (2011)

    Article  Google Scholar 

  18. Aharon, M., Elad, M.A.B.: K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE T. on Sig. Proc. 54, 4311–4322 (2006)

    Article  Google Scholar 

  19. Elbakri, I.A., Fessler, J.: Statistical image reconstruction for polyenergetic x-ray computed tomography. IEEE Trans. on Med. Img. 21, 89–99 (2002)

    Article  Google Scholar 

  20. Guerquin-Kern, M., Lejeune, L., Pruessmann, K.P., Unser, M.: Realistic analytical phantoms for parallel magnetic resonance imaging. IEEE Transactions on Medical Imaging 31, 626–636 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sakhaee, E., Entezari, A. (2014). Learning Splines for Sparse Tomographic Reconstruction. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2014. Lecture Notes in Computer Science, vol 8887. Springer, Cham. https://doi.org/10.1007/978-3-319-14249-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14249-4_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14248-7

  • Online ISBN: 978-3-319-14249-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics