Skip to main content

Grounding Dynamic Spatial Relations for Embodied (Robot) Interaction

  • Conference paper
PRICAI 2014: Trends in Artificial Intelligence (PRICAI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8862))

Included in the following conference series:

Abstract

This paper presents a computational model of the processing of dynamic spatial relations occurring in an embodied robotic interaction setup. A complete system is introduced that allows autonomous robots to produce and interpret dynamic spatial phrases (in English) given an environment of moving objects. The model unites two separate research strands: computational cognitive semantics and on commonsense spatial representation and reasoning. The model for the first time demonstrates an integration of these different strands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello, M., Pratt-Hartmann, I.E., Van Benthem, J.F.: Handbook of Spatial Logics. Springer-Verlag New York, Inc., Secaucus (2007)

    Book  MATH  Google Scholar 

  2. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  3. Bhatt, M., Guesgen, H., Wölfl, S., Hazarika, S.: Qualitative spatial and temporal reasoning: Emerging applications, trends, and directions. Spatial Cognition & Computation 11(1), 1–14 (2011)

    Article  Google Scholar 

  4. Bhatt, M.: Reasoning about space, actions and change: A paradigm for applications of spatial reasoning. In: Qualitative Spatial Representation and Reasoning: Trends and Future Directions. IGI Global, USA (2012)

    Google Scholar 

  5. Bhatt, M., Lee, J.H., Schultz, C.: CLP(QS): A Declarative Spatial Reasoning Framework. In: Egenhofer, M., Giudice, N., Moratz, R., Worboys, M. (eds.) COSIT 2011. LNCS, vol. 6899, pp. 210–230. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Bhatt, M., Schultz, C., Freksa, C.: The ‘Space’ in Spatial Assistance Systems: Conception, Formalisation and Computation. In: Tenbrink, T., Wiener, J., Claramunt, C. (eds.) Representing Space in Cognition: Interrelations of Behavior, Language, and Formal Models. Explorations in Language and Space. Oxford University Press (2013) 978-0-19-967991-1

    Google Scholar 

  7. Cohn, A., Bennett, B., Gooday, J., Gotts, N.: Representing and reasoning with qualitative spatial relations about regions. In: Stock, O. (ed.) Spatial and Temporal Reasoning, pp. 97–134. Kluwer Academic Publishers, Dordrecht (1997)

    Chapter  Google Scholar 

  8. Davis, E.: Qualitative reasoning and spatio-temporal continuity. In: Hazarika, S.M. (ed.) Qualitative Spatio-Temporal Representation and Reasoning: Trends and Future Directions, pp. 97–146. IGI Global, Hershey (2012)

    Chapter  Google Scholar 

  9. Dubba, K., Bhatt, M., Dylla, F., Hogg, D., Cohn, A.: Interleaved inductive-abductive reasoning for learning complex event models. In: Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds.) ILP 2011. LNCS (LNAI), vol. 7207, pp. 113–129. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Fasola, J., Mataric, M.J.: Using semantic fields to model dynamic spatial relations in a robot architecture for natural language instruction of service robots. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 143–150. IEEE (2013)

    Google Scholar 

  11. Freksa, C.: Conceptual neighborhood and its role in temporal and spatial reasoning. In: Singh, M., Travé-Massuyès, L. (eds.) Decision Support Systems and Qualitative Reasoning, pp. 181–187. North-Holland, Amsterdam (1991)

    Google Scholar 

  12. Galton, A.: Qualitative Spatial Change. Oxford University Press (2000)

    Google Scholar 

  13. Johnson-Laird, P.N.: Procedural semantics. Cognition 5(3), 189–214 (1977)

    Article  Google Scholar 

  14. Kelleher, J., Kruijff, G.J., Costello, F.: ACL-44: Proceedings of the 21st International Conference on Computational Linguistics, Morristown, NJ, USA

    Google Scholar 

  15. Moratz, R., Tenbrink, T.: Spatial reference in linguistic human-robot interaction: Iterative, empirically supported development of a model of projective relations. Spatial Cognition & Computation 6(1), 63–107 (2006)

    Article  Google Scholar 

  16. Muller, P.: A qualitative theory of motion based on spatio-temporal primitives. In: Cohn, A.G., Schubert, L.K., Shapiro, S.C. (eds.) Proceedings of the Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR 1998), Trento, Italy, June 2-5, pp. 131–143. Morgan Kaufmann (1998)

    Google Scholar 

  17. Regier, T.: The emergence of words: Attentional learning in form and meaning. Cognitive Science 29(6), 819–865 (2005)

    Article  Google Scholar 

  18. Renz, J., Nebel, B.: Qualitative spatial reasoning using constraint calculi. In: Handbook of Spatial Logics [1], pp. 161–215

    Google Scholar 

  19. Spranger, M., Loetzsch, M.: In: Steels, L. (ed.) Design Patterns in Fluid Construction Grammar, pp. 265–298. John Benjamins

    Google Scholar 

  20. Spranger, M., Loetzsch, M., Steels, L.: A Perceptual System for Language Game Experiments. In: Steels, L., Hild, M. (eds.) Language Grounding in Robots, pp. 89–110. Springer (2012)

    Google Scholar 

  21. Spranger, M., Pauw, S.: Dealing with Perceptual Deviation - Vague Semantics for Spatial Language and Quantification. In: Steels, L., Hild, M. (eds.) Language Grounding in Robots, pp. 173–192. Springer (2012)

    Google Scholar 

  22. Spranger, M., Pauw, S., Loetzsch, M., Steels, L.: Open-ended Procedural Semantics. In: Steels, L., Hild, M. (eds.) Language Grounding in Robots, pp. 153–172. Springer (2012)

    Google Scholar 

  23. Spranger, M.: Evolving grounded spatial language strategies. KI - Künstliche Intelligenz 27(2), 97–106 (2013), http://dx.doi.org/10.1007/s13218-013-0245-4

    Article  Google Scholar 

  24. Steels, L.: Evolving grounded communication for robots. Trends in Cognitive Sciences 7(7), 308–312 (2003)

    Article  Google Scholar 

  25. Steels, L. (ed.): Design Patterns in Fluid Construction Grammar. John Benjamins (2011)

    Google Scholar 

  26. Suchan, J., Bhatt, M., Santos, P.E.: Perceptual narratives of space and motion for semantic interpretation of visual data. In: Proceedings of International Workshop on Computer Vision + Ontology Applied Cross-Disciplinary Technologies (CONTACT). ECCV 2014 – European Conference on Computer Vision (2014)

    Google Scholar 

  27. Talmy, L.: Toward a cognitive semantics. Concept Structuring Systems, vol. 1. The MIT Press (2000)

    Google Scholar 

  28. Tellex, S., Kollar, T., Dickerson, S., Walter, M.R., Banerjee, A.G., Teller, S., Roy, N.: Approaching the symbol grounding problem with probabilistic graphical models. AI Magazine 32(4), 64–76 (2011)

    Google Scholar 

  29. Tenbrink, T.: Space, time, and the use of language: An investigation of relationships. Cognitive Linguistics Research, vol. 36. Walter de Gruyter, Berlin (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Spranger, M., Suchan, J., Bhatt, M., Eppe, M. (2014). Grounding Dynamic Spatial Relations for Embodied (Robot) Interaction. In: Pham, DN., Park, SB. (eds) PRICAI 2014: Trends in Artificial Intelligence. PRICAI 2014. Lecture Notes in Computer Science(), vol 8862. Springer, Cham. https://doi.org/10.1007/978-3-319-13560-1_83

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13560-1_83

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13559-5

  • Online ISBN: 978-3-319-13560-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics