Skip to main content

Reduction of Resolution Refutations and Interpolants via Subsumption

  • Conference paper
Book cover Hardware and Software: Verification and Testing (HVC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8855))

Included in the following conference series:

Abstract

Propositional resolution proofs and interpolants derived from them are widely used in automated verification and circuit synthesis. There is a broad consensus that “small is beautiful”—small proofs and interpolants lead to concise abstractions in verification and compact designs in synthesis.Contemporary proof reduction techniques either minimise the proof during construction, or perform a post-hoc transformation of a given resolution proof. We focus on the latter class and present a subsumption-based proof reduction algorithm that extends existing singlepass analyses and relies on a meet-over-all-paths analysis to identify redundant resolution steps and clauses.We show that smaller refutations do not necessarily entail smaller interpolants, and use labelled interpolation systems to generalise our reduction approach to interpolants. Experimental results support the theoretical claims.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential separation between regular and general resolution. In: STOC. ACM (2002)

    Google Scholar 

  2. Andrews, P.B.: Resolution with merging. J. ACM 15(3), 367–381 (1968)

    Article  MATH  Google Scholar 

  3. Bar-Ilan, O., Fuhrmann, O., Hoory, S., Shacham, O., Strichman, O.: Reducing the size of resolution proofs in linear time. STTT 13(3), 263–272 (2011)

    Article  Google Scholar 

  4. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient mus extraction. AI Communications 25(2), 97–116 (2012)

    MATH  MathSciNet  Google Scholar 

  5. Biere, A.: PicoSAT essentials. JSAT 4(2-4), 75–97 (2008)

    MATH  Google Scholar 

  6. Bloem, R., Könighofer, R., Seidl, M.: Sat-based synthesis methods for safety specs. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1–20. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  7. Boudou, J., Woltzenlogel Paleo, B.: Compression of propositional resolution proofs by lowering subproofs. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS, vol. 8123, pp. 59–73. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Cabodi, G., Loiacono, C., Vendraminetto, D.: Optimization techniques for craig interpolant compaction in unbounded model checking. In: Design, Automation and Test in Europe, pp. 1417–1422. ACM (2013)

    Google Scholar 

  9. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symbolic Logic 22(3), 250–268 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  10. D’Silva, V.: Propositional interpolation and abstract interpretation. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 185–204. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Restructuring resolution refutations for interpolation. Technical report, Oxford (October 2008)

    Google Scholar 

  12. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 129–145. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Fontaine, P., Merz, S., Woltzenlogel Paleo, B.: Compression of propositional resolution proofs via partial regularization. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 237–251. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Gershman, R., Koifman, M., Strichman, O.: Deriving small unsatisfiable cores with dominators. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 109–122. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: Design, Automation and Test in Europe, pp. 886–891. IEEE (2003)

    Google Scholar 

  16. Gupta, A.: Improved single pass algorithms for resolution proof reduction. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 107–121. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. McMillan, K.L.: Applications of Craig Interpolants in Model Checking. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 1–12. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Hofferek, G., Gupta, A., Könighofer, B., Jiang, J.-H.R., Bloem, R.: Synthesizing multiple boolean functions using interpolation on a single proof. In: Formal Methods in Computer-Aided Design, pp. 77–84. IEEE (2013)

    Google Scholar 

  19. Huang, G.: Constructing Craig interpolation formulas. In: Li, M., Du, D.-Z. (eds.) COCOON 1995. LNCS, vol. 959, pp. 181–190. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  20. Jiang, J.-H.R., Lin, H.-P., Hung, W.-L.: Interpolating functions from large Boolean relations. In: ICCAD, pp. 779–784. ACM (2009)

    Google Scholar 

  21. Krajíček, J.: Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. J. Symbolic Logic 62(2), 457–486 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. McMillan, K.L.: An interpolating theorem prover. Theoretical Comput. Sci. 345(1), 101–121 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 2–17. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Nadel, A., Ryvchin, V., Strichman, O.: Efficient MUS extraction with resolution. In: Formal Methods in Computer-Aided Design, pp. 197–200. IEEE (2013)

    Google Scholar 

  26. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symbolic Logic 62(3), 981–998 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO: A framework for producing effective interpolants in SAT-based software verification. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 683–693. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  28. Rollini, S.F., Bruttomesso, R., Sharygina, N., Tsitovich, A.: Resolution proof transformation for compression and interpolation. The Computing Research Repository, abs/1307.2028 (2013)

    Google Scholar 

  29. Simmonds, J., Davies, J., Gurfinkel, A., Chechik, M.: Exploiting resolution proofs to speed up LTL vacuity detection for BMC. STTT 12(5), 319–335 (2010)

    Article  Google Scholar 

  30. Tseitin, G.: On the complexity of derivation in propositional calculus. Studies in Mathematics and Mathematical Logic, Part II (1970)

    Google Scholar 

  31. Urquhart, A.: The complexity of propositional proofs. Bulletin of Symbolic Logic 1(4), 425–467 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Wu, B.-H., Yang, C.-J., Huang, C.-Y., Jiang, J.-H.: A robust functional ECO engine by SAT proof minimization and interpolation techniques. In: ICCAD (2010)

    Google Scholar 

  33. Zhang, L.: On subsumption removal and on-the-fly CNF simplification. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 482–489. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bloem, R., Malik, S., Schlaipfer, M., Weissenbacher, G. (2014). Reduction of Resolution Refutations and Interpolants via Subsumption. In: Yahav, E. (eds) Hardware and Software: Verification and Testing. HVC 2014. Lecture Notes in Computer Science, vol 8855. Springer, Cham. https://doi.org/10.1007/978-3-319-13338-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13338-6_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13337-9

  • Online ISBN: 978-3-319-13338-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics