Skip to main content

Ultrafast Intersystem Crossing in SO2 and Nucleobases

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 162))

Abstract

Mixed quantum-classical dynamics simulations show that intersystem crossing between singlet and triplet states in SO2 and in nucleobases takes place on an ultrafast timescale (few 100 fs), directly competing with internal conversion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C. M. Marian, “Spin-orbit coupling and intersystem crossing in molecules,” WIREs Comput. Mol. Sci. 2, 187 (2012).

    Google Scholar 

  2. A. Cannizzo, F. van Mourik, W. Gawelda, G. Zgrablic, C. Bressler, and M. Chergui, “Broadband femtosecond fluorescence spectroscopy of [Ru(bpy)3]2+,” Angew. Chem. 118, 3246 (2006).

    Google Scholar 

  3. I. Tavernelli, B. F. Curchod, and U. Rothlisberger, “Nonadiabatic molecular dynamics with solvent effects: A LR-TDDFT QM/MM study of ruthenium (II) tris (bipyridine) in water,” Chem. Phys. 391, 101 (2011).

    Google Scholar 

  4. L. Freitag and L. González, “Theoretical spectroscopy and photodynamics of a ruthenium nitrosyl complex,” Inorg. Chem. 53, 6415 (2014).

    Google Scholar 

  5. J. Cadet and P. Vigny, “The photochemistry of nucleic acids,” in “Bioorganic Photochemistry 1: Photochemistry and the Nucleic Acids,”, H. Morrison, ed. (Wiley-Interscience, 1990).

    Google Scholar 

  6. T. J. Penfold, R. Spesyvtsev, O. M. Kirkby, R. S. Minns, D. S. N. Parker, H. H. Fielding, and G. A. Worth, “Quantum dynamics study of the competing ultrafast intersystem crossing and internal conversion in the ‘channel 3’ region of benzene,” J. Chem. Phys. 137, 204310 (2012).

    Google Scholar 

  7. J. C. Tully, “Molecular dynamics with electronic transitions,” J. Chem. Phys. 93, 1061 (1990).

    Google Scholar 

  8. M. Richter, P. Marquetand, J. González-Vázquez, I. Sola, and L. González, “SHARC: Ab initio molecular dynamics with surface hopping in the adiabatic representation including arbitrary couplings,” J. Chem. Theory Comput. 7, 1253 (2011).

    Google Scholar 

  9. S. Mai, P. Marquetand, M. Richter, J. González-Vázquez, and L. González, “Singlet and triplet excited-state dynamics study of the keto and enol tautomers of cytosine,” ChemPhysChem 14, 2920 (2013).

    Google Scholar 

  10. G. Granucci, M. Persico, and G. Spighi, “Surface hopping trajectory simulations with spin-orbit and dynamical couplings,” J. Chem. Phys. 137, 22A501 (2012).

    Google Scholar 

  11. A. E. Douglas, “The Zeeman effect in the spectra of polyatomic molecules,” Can. J. Phys. 36, 147 (1958).

    Google Scholar 

  12. S. Mai, P. Marquetand, and L. González, “Non-adiabatic and intersystem crossings dynamics in SO2: II. The role of triplet states in the bound state dynamics studied by surface-hopping simulations,” J. Chem. Phys. 140, 204302 (2014).

    Google Scholar 

  13. I. Wilkinson, A. E. Boguslavskiy, J. Mikosch, D. M. Villeneuve, H.-J. Wörner, M. Spanner, S. Patchkovskii, and A. Stolow, “Non-adiabatic and intersystem crossing dynamics in SO2 I: Bound state relaxation studied by time-resolved photoelectron photoion coincidence spectroscopy,” J. Chem. Phys. 140 204301 (2014).

    Google Scholar 

  14. C. Lévêque, R. Taeb, and H. Köppel, “Communication: Theoretical prediction of the importance of the \( ^{3} B_{2} \) state in the dynamics of sulfur dioxide,” J. Chem. Phys. 140, 091101 (2014).

    Google Scholar 

  15. J. González-Vázquez and L. González, “A time-dependent picture of the ultrafast deactivation of keto-cytosine including three-state conical intersections,” ChemPhysChem 11, 3617 (2010).

    Google Scholar 

  16. J.-W. Ho, H.-C. Yen, W.-K. Chou, C.-N. Weng, L.-H. Cheng, H.-Q. Shi, S.-H. Lai, and P.-Y. Cheng, “Disentangling intrinsic ultrafast excited-state dynamics of cytosine tautomers,” J. Phys. Chem. A 115, 8406 (2011).

    Google Scholar 

  17. M. Richter, S. Mai, P. Marquetand, L. González: Phys. Chem. Chem. Phys. 16, 24423 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia González’s .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mai, S., Richter, M., Marquetand, P., González’s, L. (2015). Ultrafast Intersystem Crossing in SO2 and Nucleobases. In: Yamanouchi, K., Cundiff, S., de Vivie-Riedle, R., Kuwata-Gonokami, M., DiMauro, L. (eds) Ultrafast Phenomena XIX. Springer Proceedings in Physics, vol 162. Springer, Cham. https://doi.org/10.1007/978-3-319-13242-6_124

Download citation

Publish with us

Policies and ethics