Skip to main content

Flows Driven by Banach Space-Valued Rough Paths

  • Chapter
  • First Online:
Séminaire de Probabilités XLVI

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 2123))

Abstract

We show in this note how the machinery of \(\mathcal{C}^{1}\)-approximate flows devised in the work Flows driven by rough paths, and applied there to reprove and extend most of the results on Banach space-valued rough differential equations driven by a finite dimensional rough path can be used to deal with rough differential equations driven by an infinite dimensional Banach space-valued weak geometric Hölder p-rough paths, for any p > 2, giving back Lyons’ theory in its full force in a simple way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Lyons, Differential equations driven by rough signals. Rev. Mat. Iberoam. 14(2), 215–310 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Gubinelli, Controlling rough paths. J. Funct. Anal. 216(1), 86–140 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Deya, M. Gubinelli, S. Tindel, Non-linear rough heat equations. Probab. Theory Relat. Fields 153(1–2), 97–147 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Gubinelli, Rough solutions for the periodic Korteweg–de Vries equation. Commun. Pure Appl. Anal. 11(2), 709–733 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Flandoli, M. Gubinelli, E. Priola, Well-posedness of the transport equation by stochastic perturbation. Invent. Math. 180(1), 1–53 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Gubinelli, S. Tindel, Rough evolution equations. Ann. Probab. 38(1), 1–75 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Hairer, Solving the KPZ equation. Ann. Maths 178(2), 559–664 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Hairer, A theory of regularity structures. Preprint (2013)

    Google Scholar 

  9. P. Friz, N. Victoir, Euler estimates for rough differential equations. J. Differ. Equ. 244(2), 388–412 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Friz, N. Victoir, Multidimensional Stochastic Processes as Rough Paths. CUP, Encyclopedia of Mathematics and its Applications, vol. 89. http://www.amazon.com/Multidimensional-Stochastic-Processes-Rough-Paths/dp/0521876079/ref=sr_1_1?ie=UTF8&qid=1416231458&sr=8-1&keywords=Multidimensional+Stochastic+Processes+as+Rough+Paths (2010)

    Google Scholar 

  11. A.M. Davie, Differential equations driven by rough paths: an approach via discrete approximation. Appl. Math. Res. Express AMRX 2, 40 (2007)

    MathSciNet  Google Scholar 

  12. I. Bailleul, Flows driven by rough paths. Preprint. arXiv:1203.0888 (2012)

    Google Scholar 

  13. Y. Boutaib, L.G. Gyurko, T. Lyons, D. Yang, Dimension-free estimates of rough differential equations. Preprint (2013)

    Google Scholar 

  14. T.J. Lyons, M. Caruana, Th. Lévy, Differential Equations Driven by Rough Paths. Lecture Notes in Mathematics, vol. 1908 (Springer, New York, 2007)

    Google Scholar 

  15. D. Feyel, A. de La Pradelle, Curvilinear integrals along enriched paths. Electron. J. Probab. 11, 860–892 (2006)

    Article  MathSciNet  Google Scholar 

  16. D. Feyel, A. de La Pradelle, G. Mokobodzki, A non-commutative sewing lemma. Electron. Commun. Probab. 13, 24–34 (2008)

    MathSciNet  MATH  Google Scholar 

  17. I. Bailleul, Path-dependent rough differential equations. Preprint. arXiv:1309.1291 (2013)

    Google Scholar 

  18. T. Lyons, Z. Qian, System Control and Rough Paths. Oxford Mathematical Monographs. http://www.amazon.com/System-Control-Oxford-Mathematical-Monographs-ebook/dp/B000TU7360/ref=sr_1_1?ie=UTF8&qid=1416231347&sr=8-1&keywords=system+control+and+rough+paths (2002)

    Google Scholar 

  19. R. Azencott, Formule de Taylor stochastique et développements asymptotiques d’intégrales de Feynman. Séminaire de Probabilités, vol. XVI (1982)

    Google Scholar 

  20. G. Ben Arous, Flots et séries de Taylor stochastiques. Prob. Theory Relat. Fields 81, 29–77, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  21. F. Castell, Asymptotic expansion of stochastic flows. Prob. Theory Relat. Fields 96, 225–239 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Lejay, On rough differential equations. Electron. J. Probab. 12, 341–364 (2009)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was partially supported by an ANR grant “Retour post-doctorant”. The author warmly thanks the UniversitÃl’ de Bretagne Occidentale where part of this work was written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismaël Bailleul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bailleul, I. (2014). Flows Driven by Banach Space-Valued Rough Paths. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) Séminaire de Probabilités XLVI. Lecture Notes in Mathematics(), vol 2123. Springer, Cham. https://doi.org/10.1007/978-3-319-11970-0_7

Download citation

Publish with us

Policies and ethics