Skip to main content

On Maximal Inequalities for Purely Discontinuous Martingales in Infinite Dimensions

  • Chapter
  • First Online:
Séminaire de Probabilités XLVI

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 2123))

Abstract

The purpose of this paper is to give a survey of a class of maximal inequalities for purely discontinuous martingales, as well as for stochastic integral and convolutions with respect to Poisson measures, in infinite dimensional spaces. Such maximal inequalities are important in the study of stochastic partial differential equations with noise of jump type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Just to avoid (unlikely) confusion, we note that \(\mathbb{E}(\cdots \,)^{\alpha }\) always stands for the expectation of (⋯ )α, and not for \([\mathbb{E}(\cdots \,)]^{\alpha }\).

  2. 2.

    The subscript ⋅  c means “with compact support”, and C b 2(H) denotes the set of twice continuously differentiable functions \(\varphi: H \rightarrow \mathbb{R}\) such that \(\varphi\), \(\varphi ^{{\prime}}\) and \(\varphi ^{{\prime\prime}}\) are bounded.

  3. 3.

    One can verify that the proof in [22] goes through without any change also for Hilbert-space-valued martingales.

  4. 4.

    The definition of class D is not standard and it is introduced just for the sake of concision.

  5. 5.

    It should be mentioned that there are discrete-time real-valued analogs of BJ 2, p , p ≥ 2, that go under the name of Burkholder-Rosenthal (in alphabetical but reverse chronological order: Rosenthal [38] proved it for sequences of independent random variables in 1970, then Burkholder [5] extended it to discrete-time (real) martingales in 1973), and some authors speak of continuous-time Burkholder-Rosenthal inequalities. One may then also propose to use the expression Burkholder-Rosenthal-Novikov inequality, that, however, seems too long.

References

  1. D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd edn. (Cambridge University Press, Cambridge, 2009). MR 2512800 (2010m:60002)

    Google Scholar 

  2. K. Bichteler, J.-B. Gravereaux, J. Jacod, Malliavin Calculus for Processes with Jumps (Gordon and Breach Science Publishers, New York, 1987). MR MR1008471 (90h:60056)

    Google Scholar 

  3. K. Bichteler, J. Jacod, Calcul de Malliavin pour les diffusions avec sauts: existence d’une densité dans le cas unidimensionnel, in Seminar on Probability, XVII. Lecture Notes in Math., vol. 986 (Springer, Berlin, 1983), pp. 132–157. MR 770406 (86f:60070)

    Google Scholar 

  4. Z. Brzeźniak, E. Hausenblas, J. Zhu, Maximal inequality of stochastic convolution driven by compensated Poisson random measures in Banach spaces, arXiv:1005.1600 (2010)

    Google Scholar 

  5. D.L. Burkholder, Distribution function inequalities for martingales. Ann. Probab. 1, 19–42 (1973). MR 0365692 (51 #1944)

    Google Scholar 

  6. D.L. Burkholder, R.F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124, 249–304 (1970). MR 0440695 (55 #13567)

    Google Scholar 

  7. V.H. de la Peña, E. Giné, Decoupling (Springer, New York, 1999). MR 1666908 (99k:60044)

    Google Scholar 

  8. S. Dirksen, Itô isomorphisms for L p-valued Poisson stochastic integrals. Ann. Probab. 42(6), 2595–2643 (2014). doi:10.1214/13-AOP906

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Dirksen, J. Maas, and J. van Neerven, Poisson stochastic integration in Banach spaces, Electron. J. Probab. 18(100), 28 pp. (2013)

    Google Scholar 

  10. K. Dzhaparidze, E. Valkeila, On the Hellinger type distances for filtered experiments. Probab. Theory Relat. Fields 85(1), 105–117 (1990). MR 1044303 (91d:60102)

    Google Scholar 

  11. G. Fendler, Dilations of one parameter semigroups of positive contractions on L p spaces. Can. J. Math. 49(4), 736–748 (1997). MR MR1471054 (98i:47035)

    Google Scholar 

  12. A.M. Fröhlich, L. Weis, H calculus and dilations. Bull. Soc. Math. France 134(4), 487–508 (2006). MR 2364942 (2009a:47091)

    Google Scholar 

  13. G.H. Hardy, J.E. Littlewood, G.Pólya, Inequalities, 2nd edn. (Cambridge University Press, Cambridge, 1988). MR 0046395 (13,727e)

    Google Scholar 

  14. E. Hausenblas, J. Seidler, A note on maximal inequality for stochastic convolutions. Czech. Math. J. 51(126)(4), 785–790 (2001). MR MR1864042 (2002j:60092)

    Google Scholar 

  15. E. Hausenblas, J. Seidler, Stochastic convolutions driven by martingales: maximal inequalities and exponential integrability. Stoch. Anal. Appl. 26(1), 98–119 (2008). MR 2378512 (2009a:60066)

    Google Scholar 

  16. J. Jacod, Th.G. Kurtz, S. Méléard, Ph. Protter, The approximate Euler method for Lévy driven stochastic differential equations. Ann. Inst. H. Poincaré Probab. Stat. 41(3), 523–558 (2005). MR MR2139032 (2005m:60149)

    Google Scholar 

  17. S.G. Kreĭn, Yu.Ī. Petunı̄n, E.M. Semënov, Interpolation of Linear Operators. Translations of Mathematical Monographs, vol. 54 (American Mathematical Society, Providence, 1982). MR 649411 (84j:46103)

    Google Scholar 

  18. H. Kunita, Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms, in Real and Stochastic Analysis (Birkhäuser Boston, Boston, 2004), pp. 305–373. MR 2090755 (2005h:60169)

    Google Scholar 

  19. S. Kwapień, W.A. Woyczyński, Random Series and Stochastic Integrals: Single and Multiple (Birkhäuser, Boston, 1992). MR 1167198 (94k:60074)

    Google Scholar 

  20. M. Ledoux, M. Talagrand, Probability in Banach Spaces (Springer, Berlin, 1991). MR 1102015 (93c:60001)

    Google Scholar 

  21. E. Lenglart, Relation de domination entre deux processus. Ann. Inst. H. Poincaré Sect. B (N.S.) 13(2), 171–179 (1977). MR 0471069 (57 #10810)

    Google Scholar 

  22. E. Lenglart, D. Lépingle, M. Pratelli, Présentation unifiée de certaines inégalités de la théorie des martingales, in Séminaire de Probabilités, XIV (Paris, 1978/1979). Lecture Notes in Math., vol. 784 (Springer, Berlin, 1980), pp. 26–52. MR 580107 (82d:60087)

    Google Scholar 

  23. C. Marinelli, On maximal inequalities for purely discontinuous L q -valued martingales. Arxiv:1311.7120v1 (2013)

    Google Scholar 

  24. C. Marinelli, On regular dependence on parameters of stochastic evolution equations, in preparation

    Google Scholar 

  25. C. Marinelli, Local well-posedness of Musiela’s SPDE with Lévy noise. Math. Finance 20(3), 341–363 (2010). MR 2667893

    Google Scholar 

  26. C. Marinelli, Approximation and convergence of solutions to semilinear stochastic evolution equations with jumps. J. Funct. Anal. 264(12), 2784–2816 (2013). MR 3045642

    Google Scholar 

  27. C. Marinelli, C. Prévôt, M.Röckner, Regular dependence on initial data for stochastic evolution equations with multiplicative Poisson noise. J. Funct. Anal. 258(2), 616–649 (2010). MR MR2557949

    Google Scholar 

  28. C. Marinelli, M. Röckner, On uniqueness of mild solutions for dissipative stochastic evolution equations. Infinite Dimens. Anal. Quantum Probab. Relat. Top. 13(3), 363–376 (2010). MR 2729590 (2011k:60220)

    Google Scholar 

  29. C. Marinelli, M. Röckner, Well-posedness and asymptotic behavior for stochastic reaction-diffusion equations with multiplicative Poisson noise. Electron. J. Probab. 15(49), 1528–1555 (2010). MR 2727320

    Google Scholar 

  30. C. Marinelli, M. Röckner, On the maximal inequalities of Burkholder, Davis and Gundy, arXiv preprint (2013)

    Google Scholar 

  31. M. Métivier, Semimartingales (Walter de Gruyter & Co., Berlin, 1982). MR MR688144 (84i:60002)

    Google Scholar 

  32. P.A. Meyer, Le dual de H 1 est BMO (cas continu), Séminaire de Probabilités, VII (Univ. Strasbourg). Lecture Notes in Math., vol. 321 (Springer, Berlin, 1973), pp. 136–145. MR 0410910 (53 #14652a)

    Google Scholar 

  33. A.A. Novikov, Discontinuous martingales. Teor. Verojatnost. i Primemen. 20, 13–28 (1975). MR 0394861 (52 #15660)

    Google Scholar 

  34. Sz. Peszat, J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise (Cambridge University Press, Cambridge, 2007). MR MR2356959

    Google Scholar 

  35. Io. Pinelis, Optimum bounds for the distributions of martingales in Banach spaces. Ann. Probab. 22(4), 1679–1706 (1994). MR 1331198 (96b:60010)

    Google Scholar 

  36. C. Prévôt (Knoche), Mild solutions of SPDE’s driven by Poisson noise in infinite dimensions and their dependence on initial conditions, Ph.D. thesis, Universität Bielefeld, 2005

    Google Scholar 

  37. Ph. Protter, D. Talay, The Euler scheme for Lévy driven stochastic differential equations. Ann. Probab. 25(1), 393–423 (1997). MR MR1428514 (98c:60063)

    Google Scholar 

  38. H.P. Rosenthal, On the subspaces of L p (p > 2) spanned by sequences of independent random variables. Isr. J. Math. 8, 273–303 (1970). MR 0271721 (42 #6602)

    Google Scholar 

  39. E.M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory (Princeton University Press, Princeton, 1970). MR 0252961 (40 #6176)

    Google Scholar 

  40. B. Sz.-Nagy, C. Foias, H. Bercovici, L. Kérchy, Harmonic analysis of operators on Hilbert space, 2nd edn. (Springer, New York, 2010). MR 2760647 (2012b:47001)

    Google Scholar 

  41. M. Veraar, L. Weis, A note on maximal estimates for stochastic convolutions. Czech. Math. J. 61(136)(3), 743–758 (2011). MR 2853088

    Google Scholar 

  42. L. Weis, The H holomorphic functional calculus for sectorial operators—a survey, in Partial Differential Equations and Functional Analysis (Birkhäuser, Basel, 2006), pp. 263–294. MR 2240065 (2007c:47018)

    Google Scholar 

  43. A.T.A. Wood, Rosenthal’s inequality for point process martingales. Stoch. Process. Appl. 81(2), 231–246 (1999). MR 1694561 (2000f:60073)

    Google Scholar 

  44. A.T.A. Wood, Acknowledgement of priority. Comment on: Rosenthal’s inequality for point process martingales. Stoch. Process. Appl. 81(2), 231–246 (1999). MR1694561 (2000f:60073); Stoch. Process. Appl. 93(2), 349 (2001). MR 1828780

    Google Scholar 

Download references

Acknowledgements

A large part of the work for this paper was carried out during visits of the first-named author to the Interdisziplinäres Zentrum für Komplexe Systeme, Universität Bonn, invited by S. Albeverio. The second-named author is supported by the DFG through the SFB 701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Marinelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marinelli, C., Röckner, M. (2014). On Maximal Inequalities for Purely Discontinuous Martingales in Infinite Dimensions. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) Séminaire de Probabilités XLVI. Lecture Notes in Mathematics(), vol 2123. Springer, Cham. https://doi.org/10.1007/978-3-319-11970-0_10

Download citation

Publish with us

Policies and ethics