Skip to main content

Extreme State Aggregation beyond MDPs

  • Conference paper
Book cover Algorithmic Learning Theory (ALT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8776))

Included in the following conference series:

Abstract

We consider a Reinforcement Learning setup without any (esp. MDP) assumptions on the environment. State aggregation and more generally feature reinforcement learning is concerned with mapping histories/raw-states to reduced/aggregated states. The idea behind both is that the resulting reduced process (approximately) forms a small stationary finite-state MDP, which can then be efficiently solved or learnt. We considerably generalize existing aggregation results by showing that even if the reduced process is not an MDP, the (q-)value functions and (optimal) policies of an associated MDP with same state-space size solve the original problem, as long as the solution can approximately be represented as a function of the reduced states. This implies an upper bound on the required state space size that holds uniformly for all RL problems. It may also explain why RL algorithms designed for MDPs sometimes perform well beyond MDPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fazekas, I., Klesov, O.: A general approach to the strong law of large numbers. Theory of Probability & Its Applications 45(3), 436–449 (2001)

    Article  MathSciNet  Google Scholar 

  2. Ferns, N., Panangaden, P., Precup, D.: Metrics for finite Markov decision processes. In: Proc. 20th Conf. on Uncertainty in Artificial Intelligence (UAI 2004), pp. 162–169 (2004)

    Google Scholar 

  3. Givan, R., Dean, T., Greig, M.: Equivalence notions and model minimization in Markov decision processes. Artificial Intelligence 147(1–2), 163–223 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability. Springer, Berlin (2005)

    Google Scholar 

  5. Hutter, M.: Feature dynamic Bayesian networks. In: Proc. 2nd Conf. on Artificial General Intelligence (AGI 2009), vol. 8, pp. 67–73. Atlantis Press (2009)

    Google Scholar 

  6. Hutter, M.: Feature reinforcement learning: Part I: Unstructured MDPs. Journal of Artificial General Intelligence 1, 3–24 (2009)

    Article  Google Scholar 

  7. Hutter, M.: Extreme state aggregation beyond MDPs. Technical report (2014), http://www.hutter1.net/publ/exsaggx.pdf

  8. Jaksch, T., Ortner, R., Auer, P.: Near-optimal regret bounds for reinforcement learning. Journal of Machine Learning Research 11, 1563–1600 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Lattimore, T., Hutter, M.: PAC bounds for discounted MDPs. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds.) ALT 2012. LNCS (LNAI), vol. 7568, pp. 320–334. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Lattimote, T., Hutter, M.: General time consistent discounting. Theoretical Computer Science 519, 140–154 (2014)

    Article  MathSciNet  Google Scholar 

  11. Lattimore, T., Hutter, M., Sunehag, P.: The sample-complexity of general reinforcement learning. Journal of Machine Learning Research, W&CP: ICML 28(3), 28–36 (2013)

    Google Scholar 

  12. McCallum, A.K.: Reinforcement Learning with Selective Perception and Hidden State. PhD thesis, Department of Computer Science, University of Rochester (1996)

    Google Scholar 

  13. Maillard, O.-A., Munos, R., Ryabko, D.: Selecting the state-representation in reinforcement learning. In: Advances in Neural Information Processing Systems (NIPS 2011), vol. 24, pp. 2627–2635 (2011)

    Google Scholar 

  14. Nguyen, P.: Feature Reinforcement Learning Agents. PhD thesis, Research School of Computer Science, Australian National University (2013)

    Google Scholar 

  15. Nguyen, P., Maillard, O., Ryabko, D., Ortner, R.: Competing with an infinite set of models in reinforcement learning. JMLR WS&CP AISTATS 31, 463–471 (2013)

    Google Scholar 

  16. Maillard, O.-A., Nguyen, P., Ortner, R., Ryabko, D.: Optimal regret bounds for selecting the state representation in reinforcement learning. JMLR W&CP ICML 28(1), 543–551 (2013)

    Google Scholar 

  17. Nguyen, P., Sunehag, P., Hutter, M.: Feature reinforcement learning in practice. In: Sanner, S., Hutter, M. (eds.) EWRL 2011. LNCS, vol. 7188, pp. 66–77. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Puterman, M.L.: Markov Decision Processes — Discrete Stochastic Dynamic Programming. Wiley, New York (1994)

    MATH  Google Scholar 

  19. Russell, S.J., Norvig, P.: Artificial Intelligence. A Modern Approach, 3rd edn. Prentice-Hall, Englewood Cliffs (2010)

    Google Scholar 

  20. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  21. Sunehag, P., Hutter, M.: Consistency of feature Markov processes. In: Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds.) ALT 2010. LNCS (LNAI), vol. 6331, pp. 360–374. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Strehl, A.L., Li, L., Littman, M.L.: Reinforcement learning in finite MDPs: PAC analysis. Journal of Machine Learning Research 10, 2413–2444 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World. Springer, New York (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hutter, M. (2014). Extreme State Aggregation beyond MDPs. In: Auer, P., Clark, A., Zeugmann, T., Zilles, S. (eds) Algorithmic Learning Theory. ALT 2014. Lecture Notes in Computer Science(), vol 8776. Springer, Cham. https://doi.org/10.1007/978-3-319-11662-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11662-4_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11661-7

  • Online ISBN: 978-3-319-11662-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics