Skip to main content

Cord Blood as a Treatment for Stroke

  • Chapter
  • First Online:
Cellular Therapy for Stroke and CNS Injuries

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

  • 939 Accesses

Abstract

Over the last few decades, there has been an explosion in stem cell research. The investigation of umbilical cord blood (UCB) cells as a treatment for stroke is even more recent. Ease of collection and the ability to maintain their stem cell properties post-cryopreservation made these cells very attractive candidates for treatment development initially. UCB cells have many advantages including a wide variety of cell types present, including hematopoietic stem cells, mesenchymal stem cells, endothelial progenitor cells, lymphocytes, and monocytes, which enhances their ability to modulate multiple targets impacted by neurodegenerative processes. Although the precise mechanisms of action are still being researched, UCB cells have been shown to benefit functional recovery and also reduce infarct size post-stroke. They have also demonstrated an ability to provide these benefits when administered peripherally and within 24–48 h post-stroke, which immensely expands the current treatment window of 3–4 h for tissue plasminogen activator. This chapter highlights the current research with UCB cells in the development of a novel treatment for stroke and demonstrates the great therapeutic potential of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAS:

Antibiotic antimycotic solution

APB:

Adult peripheral blood

BDNF:

Brain derived neurotrophic factor

BFU-E:

Erythroid burst-forming units

BM:

Bone marrow

CDC:

Center for disease control and prevention

CFU-G:

Granulocyte-macrophage colony-forming units

CFU-GEM:

Granulocyte/erythrocyte/macrophage/megakaryocyte colony-forming units

CLP:

Common lymphoid progenitor

CNS:

Central nervous system

CNTF:

Ciliary neurotrophic factor

CSF:

Colony stimulating factor

CX3CR1:

Fractalkine receptor

ECFCs:

Endothelial colony forming cells

EGF:

Epidermal growth factor

EPCs:

Endothelial progenitor cells

Epo:

Erythropoietin

ESMSCs:

Embryonic stem cell-derived mesenchymal stem cells

ext34-:

Exterior CD34-negative

FDA:

Food and drug administration

FGF:

Fibroblast growth factor

G-CSF:

Granulocyte colony stimulating factor

Gal-C:

Galactocerebrocide

GAP43:

Neural associated growth protein 43

GFAP:

Glial fibrillary acidic protein

GM-CSF:

Granulocyte and macrophage colony stimulating factor

GVHD:

Graft-versus-host disease

hEGF:

Human epidermal growth factor

HGF:

Hepatic growth factor

HLA:

Human leukocyte antigen

HSC:

Hematopoeitic stem cells

hT cells:

Jurkat T-cells

IA:

Intrarterial

ICAM:

Intercellular adhesion molecule

ICV:

Intracerebroventricular

IFN:

Interferon

Ig:

Immunoglobulin

IGF:

Insulin-like growth factor

IGFBP2:

Insulin-like growth factor binding protein 2

IL:

Interleukin

int34+:

Interior CD34-positive

IS:

Intrastriatal

IV:

Intravenous(ly)

LDH:

Lactic acid dehydrogenase

LIF:

Leukemia inhibitory factor

LIR-8:

Leukocyte immunoglobulin-like receptor-8

MAP:

Microtubule associated protein

MARCO:

Macrophage receptor with collagenous structure

MCAO:

Middle cerebral artery occlusion

MHC:

Major histocompatibility complex

MNC:

Mononuclear cell

mNSS:

Modified neurological severity score

MPC:

Myeloid progenitor cells

MRI:

Magnetic resonance imaging

MSCs:

Mesenchymal stem cells

NeuN:

Neuron-specific neural protein

NF-200:

Neurofilament heavy

NGF:

Nerve growth factor

NK:

Natural killer

NO:

Nitric oxide

NSC:

Neural stem cell

NT4/5:

Neurotrophin 4/5

OCT4:

Octomer-binding transcription factor-4

OGD:

Oxygen glucose deprivation

PBS:

Phosphate buffered saline

PDGF:

Platelet-derived growth factor

Prdx:

Peroxiredoxin

qRT-PCR:

Quantitative real time-polymerase chain reaction

RA:

Retinoic acid

ROS:

Reactive oxygen species

SCF:

Stem cell factor

SDF:

Stromal cell-derived factor

SOX2:

Sex-determining region Y-box two

SSEA:

Stage specific embryonic antigen

SVZ:

Subventricular zone

TGF:

Transforming growth factor

tPA:

Tissue plasminogen activator

TPO:

Thrombopoietin

TRA:

Tumor rejection antigen

TuJ1:

III β-tubulin

UCB:

Umbilical cord blood

VCAM:

Vascular adhesion molecule

VEGF:

Vascular endothelial growth factor

vWF:

von Willebrand factor

References

  • Abbas AK, Lichtman AH, Pillai SCaMI (2011) Cellular and molecular immunology: with STUDENT CONSULT Online Access, 7th edn. Elsvier Health Sciences, Amsterdam

    Google Scholar 

  • Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Lee JH, Oh WI, Park WS (2013) Mesenchymal stem cells prevent hydrocephalus after severe intraventricular hemorrhage. Stroke 44:497–504

    CAS  PubMed  Google Scholar 

  • Ajmo CTJ, Vernon DO, Collier L, Hall AA, Garbuzova-Davis S, Willing A, Pennypacker KR (2008) The spleen contributes to stroke-induced neurodegeneration. J Neurosci Res 86:2227–2234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ali H, Al-Mulla F (2012) Defining umbilical cord blood stem cells. Stem Cell Discovery 2:15–23

    CAS  Google Scholar 

  • Arien-Zakay H, Lecht S, Bercu MM, Tabakman R, Kohen R, Galski H, Nagler A, Lazarovici P (2009) Neuroprotection by cord blood neural progenitors involves antioxidants, neurotrophic and angiogenic factors. Exp Neurol 216:83–94

    CAS  PubMed  Google Scholar 

  • Asahara T, Kawamoto A (2004) Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol 287:C572–C579

    CAS  PubMed  Google Scholar 

  • Auerbach AD (1995) Fanconi anemia. Dermatol Clin 13:41–49

    CAS  PubMed  Google Scholar 

  • Auffray C, Sieweke MH, Geissmann F (2009) Blood monocytes: development, heterogeneity, and relationship with Dendritic cells. Annu Rev Immunol 27:669–692

    CAS  PubMed  Google Scholar 

  • Bacchetta R, Bigler M, Touraine JL, Parkman R, Tovo PA, Abrams J, de Waal MR, de Vries JE, Roncarolo MG (1994) High levels of interleukin 10 production in vivo are associated with tolerance in SCID patients transplanted with HLA mismatched hematopoietic stem cells. J Exp Med 179:493–502

    CAS  PubMed  Google Scholar 

  • Bachstetter AD, Pabon MM, Cole MJ, Hudson CE, Sanberg PR, Willing AE, Bickford PC, Gemma C, Bachstetter AD, Pabon MM, Cole MJ, Hudson CE, Sanberg PR, Willing AE, Bickford PC, Gemma C (2008) Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain. BMC Neurosci 9:22

    PubMed Central  PubMed  Google Scholar 

  • Bae S-H, Kong T-H, Lee H-S, Kim K-S, Hong KS, Chopp M, Kang M-S, Moon J (2012) Long-lasting paracrine effects of human cord blood cells on damaged neocortex in an animal model of cerebral palsy. Cell Transplant 21:2497–2515

    PubMed  Google Scholar 

  • Ballen K (2005) New trends in umbilical cord blood transplantation. Blood 105:3786–3782

    CAS  PubMed  Google Scholar 

  • Ballen KK, Gluckman E, Broxmeyer HE (2013) Umbilical cord blood transplantation: the first 25 years and beyond. Blood 122:491–498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B, Espevik T, Ziegler-Heitbrock L (2002) The proinflammatory CD14+ CD16+ DR+ + monocytes are a major source of TNF. J Immunol 168:3536–3542

    CAS  PubMed  Google Scholar 

  • Benner EJ, Mosley RL, Destache CJ, Lewis TB, Jackson-Lewis V, Gorantla S, Nemachek C, Green SR, Przedborski S, Gendelman HE (2004) Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 101:9435–9440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bertolini F, Lazzari L, Lauri E, Corsini C, Castelli C, Gorini F, Sirchia G (1995) Comparative study of different procedures for the collection and banking of umbilical cord blood. J Hematother 4:29–36

    CAS  PubMed  Google Scholar 

  • Bicknese AR, Goodwin HS, Quinn CO, Henderson VC, Chien SN, Wall DA (2002) Human umbilical cord blood cells can be induced to express markers for neurons and glia. Cell Transplant 11:261–264

    PubMed  Google Scholar 

  • Bieback K, Kern S, Klüter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22:625–634

    PubMed  Google Scholar 

  • Binder CJ, Silverman GJ (2005) Natural antibodies and the autoimmunity of atherosclerosis. Springer Semin Immunopathol 26:385–404

    CAS  PubMed  Google Scholar 

  • Boltze J, Reich DM, Hau S, Reymann KG, Strassburger M, Lobsein D, Wagner D-C, Kamprad M, Stahl T (2012a) Assessment of neuroprotective effects of human umbilical cord blood mononuclear cell subpopulations in vitro and in vivo. Cell Transplant 21:723–737

    PubMed  Google Scholar 

  • Boltze J, Schmidt UR, Reich DM, Kranz A, Reymann KG, Strassburger M, Lobsien D, Wagner DC, Forschler A, Schabitz WR (2012b) Determination of the therapeutic time window for human umbilical cord blood mononuclear cell transplantation following experimental stroke in rats. Cell Transplant 21:1199–1211

    PubMed  Google Scholar 

  • Borlongan CV, Hadman M, Davis Sanberg C, Sanberg PR (2004) CNS entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 35:2385–2389

    PubMed  Google Scholar 

  • Bracci-Laudiero L, Celestino D, Starace G, Antonelli A, Lambiase A, Procoli A, Rumi C, Lai M, Picardi A, Ballatore G, Bonini S, Aloe L (2003) CD34-positive cells in human umbilical cord blood express nerve growth factor and its specific receptor TrkA. J Neuroimmunol 136:130–139

    CAS  PubMed  Google Scholar 

  • Brichard B, Varis I, Latinne D, Deneys V, de Bruyere M, Leveugle P, Cornu G (2001) Intracellular cytokine profile of cord and adult blood monocytes. Bone Marrow Transplant 27:1081–1086

    CAS  PubMed  Google Scholar 

  • Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D, Arny M, Thomas L, Boyse EA (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A 86:3828–3832

    CAS  PubMed Central  PubMed  Google Scholar 

  • Broxmeyer HE, Hangoc G, Cooper S, Ribeiro RC, Graves V, Yoder M, Wagner J, Vadhan-Raj S, Benninger L, Rubinstein P, Broun ER (1992) Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc Natl Acad Sci U S A 89:4109–4113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Broxmeyer HE, Lee MR, Hangoc G, Cooper S, Prasain N, Kim YJ, Mallet C, Ye Z, Witting S, Cornetta K, Cheng L, Yoder MC (2011) Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells, and isolation of endothelial progenitors from 21-to 23.5-year cryopreserved cord blood. Blood 117:4773–4777

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bühnemann C, Scholz A, Bernreuther C, Malik CY, Braun H, Schachner M, Reymann KG, Dihné M (2006) Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain 129:3238–3248

    PubMed  Google Scholar 

  • Buzanska L, Machaj EK, Zablocka B, Pojda Z, Domanska-Janik K (2002) Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci 115:2131–2138

    CAS  PubMed  Google Scholar 

  • Bużańska L, Jurga M, Stachowiak EK, Stachowiak MK, Domańska-Janik K (2006) Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood. Stem Cells Dev 15:391–406

    PubMed  Google Scholar 

  • Chang L, Chen Y, Li J, Liu Z, Wang Z, Chen J, Cao W, Xu Y (2011) Cocaine-and amphetamine-regulated transcript modulates peripheral immunity and protects against brain injury in experimental stroke. Brain Behav Immun 25:260–269

    CAS  PubMed  Google Scholar 

  • Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32:2682–2688

    CAS  PubMed  Google Scholar 

  • Chen N, Newcomb J, Garbuzova-Davis S, Sanberg CD, Sanberg PR, Willing AE (2010) Human umbilical cord blood cells have trophic effects on young and aging Hippocampal neurons in vitro. Aging Dis 1:173–190

    PubMed Central  PubMed  Google Scholar 

  • Chua SJ, Bielecki R, Wong CJ, Yamanaka N, Rogers IM, Casper RF (2009) Neural progenitors, neurons and oligodendrocytes from human umbilical cord blood cells in a serum-free, feeder-free cell culture. Biochem Biophys Res Comm 379:217–221

    CAS  PubMed  Google Scholar 

  • D’Arena G, Musto P, Cascavilla N, Di Giorgio G, Fusilli S, Zendoli F, Carotenuto M (1998) Flow cytometric characterization of human umbilical cord blood lymphocytes: immunophenotypic features. Haematologica 83:197–203

    PubMed  Google Scholar 

  • De Paula S, Santos- Vitola S, Greggio S, De Paula D, Billig-Mello P, Mistrello-Lubianca J, Xavier LL, FIORI HH, Dacosta JC (2009) Hemispheric Brain Injury and Behavioral Deficits Induced by Severe Neonatal Hypoxia-Ischemia in Rats Are Not Attenuated by Intravenous Administration of Human Umbilical Cord Blood Cells. Pediatr Res 65:631–635

    PubMed  Google Scholar 

  • De Paula S, Greggio S, Marinowic DR, Machado DC, DaCosta JC (2012) The dose-response effect of acute intravenous transplantation of human umbilical cord blood cells on brain damage and spatial memory deficits in neonatal hypoxia-ischemia. Neurosci 210:431–441

    Google Scholar 

  • Dhandapani KM, Brann DW (2003) Transforming growth factor-beta: a neuroprotective factor in cerebral ischemia. Cell Biochem Biophys 39:13–22

    CAS  PubMed  Google Scholar 

  • Dirnagl U, Priller J (2005) Focal cerebral ischemia: the multifaceted role of glial cells. In: Kettenmann H, Ransom BR (eds) Neuroglia, 2nd edn. Oxford University, New York, pp 511–520

    Google Scholar 

  • Edwards JC, Cambridge G (2006) B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat Rev Immunol 6:394–403

    CAS  PubMed  Google Scholar 

  • Eggermann J, Kliche S, Jarmy G, Hoffmann K, Mayr-Beyrle U, Debatin KM, Beltinger C (2003) Endothelial progenitor cell culture and differentiation in vitro: a methodological comparison using human umbilical cord blood. Cardiovasc Res 58:478–486

    CAS  PubMed  Google Scholar 

  • Fan C-G, Zhang Q-J, Tang F-W, Han Z-B, Wang G-S, Han Z-C (2005) Human umbilical cord blood cells express neurotrophic factors. Neurosci Lett 380:322–325

    CAS  PubMed  Google Scholar 

  • Filias A, Theodorou G, Mouzopoulou S, Varvarigou A, Mantagos S, Karakantza M (2011) Phagocytic ability of neutrophils and monocytes in neonates. BMC Pediatr 11:29

    PubMed Central  PubMed  Google Scholar 

  • Finney MR, Greco NJ, Haynesworth SE, Martin JM, Hedrick DP, Swan JZ, Winter DG, Kadereit S, Joseph ME, Fu P, Pompili VJ, Laughlin MJ (2006) Direct comparison of umbilical cord blood versus bone marrow-derived endothelial precursor cells in mediating neovascularization in response to vascular ischemia. Biol Blood Marrow Transplant 12:585–593

    PubMed  Google Scholar 

  • Geissler M, Dinse HR, Neuhoff S, Kreikemeier K, Meier C (2011) Human umbilical cord blood cells restore brain damage induced changes in rat Somatosensory cortex. PLoS ONE 6:e20194

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geissmann F, Auffray C, Palframan R, Wirrig C, Ciocca A, Campisi L, Narni-Mancinelli E, Lauvau G (2008) Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. Immunol Cell Biol 86:398–408

    CAS  PubMed  Google Scholar 

  • Gille C, Leiber A, Mundle I, Spring B, Abele H, Spellerberg B, Hartmann H, Poets CF, Orlikowsky TW (2009) Phagocytosis and postphagocytic reaction of cord blood and adult blood Monocyte after infection with green fluorescent protein-labeled Escherichia coli and Group B Streptococci. Cytometry Part B 76B:271–284

    CAS  Google Scholar 

  • Gilmore GL, DePasquale DK, Lister J, Shadduck RK (2000) Ex vivo expansion of human umbilical cord blood and peripheral blood CD34+ hematopoietic stem cells. Exp Hematol 28:1297–1305

    CAS  PubMed  Google Scholar 

  • Gluckman E, Rocha V, Boyer-Chammard A, Locatelli F, Arcese W, Pasquini R, Ortega J, Souillet G, Ferreira E, Laporte JP, Fernandez M, Chastang C (1997) Outcome of cord-blood transplantation from related and unrelated donors. N Eng J Med 337:373–381

    CAS  Google Scholar 

  • Go AS et al (2013) Heart disease and stroke statistics-2013 update: a report from the American Heart Association. Circulation 127:e6–e245

    Google Scholar 

  • Golden JE, Shahaduzzaman M, Wabnitz A, Green S, Womble TA, Sanberg PR, Pennypacker KR, Willing AE (2012) Human umbilical cord blood cells alter blood and spleen cell populations after stroke. Transl Stroke Res 3:491–499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ha Y, Choi DH, Yeon DS, Lee JJ, Kim HO, Cho YE (2001) Neural phenotype expression of cultured human cord blood cells in vitro. NeuroReport 12:3523–3527

    CAS  PubMed  Google Scholar 

  • Ha Y, Lee JE, Kim KN, Cho YE, Yoon DH (2003) Intermediate filament nestin expressions in human cord blood monocytes (HCMNCs). Acta Neurochir (Wien) 145:483–487

    CAS  Google Scholar 

  • Habich A, Jurga M, Markiewicz I, Lukomska B, Bany-Laszewicz U, Domanska-Janik K (2006) Early appearance of stem/progenitor cells with neural-like characteristics in human cord blood mononuclear fraction cultured in vitro. Exp Hematol 34:914–925

    CAS  PubMed  Google Scholar 

  • Haddad R, Guardiola P, Izac B, Thibault C, Radich J, Delezoide AL, Baillou C, Lemoine FM, Gluckman JC, Pflumio F, Canque B (2004) Molecular characterization of early human T/NK and B-lymphoid progenitor cells in umbilical cord blood. Blood 104:3918–3926

    CAS  PubMed  Google Scholar 

  • Hall A, Guyer A, Leonardo C, Ajmo C, Collier L, Willing AE, Pennypacker KR (2009a) Umbilical cord blood cells directly suppress ischemic oligodendrocyte cell death. J Neurosci Res 87:333–341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hall AA, Leonardo CC, Collier LA, Rowe DD, Willing AE, Pennypacker KR (2009b) Delayed treatments for stroke influence neuronal death in rat organotypic slice cultures subjected to oxygen glucose deprivation. Neurosci 164:470–477

    CAS  Google Scholar 

  • Harris DT, Schumacher MJ, Locascio J, Besencon FJ, Olson GB, DeLuca D, Shenker L, Bard J, Boyse EA (1992) Phenotypic and functional immaturity of human umbilical cord blood T lymphocytes. Proc Natl Acad Sci U S A 89:10006–10010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hau S, Reich DM, Scholz M, Naumann W, Emmich F, Kamprad M, Boltze J (2008) Evidence for neuroprotective properties of human umbilical cord blood cells after neuronal hypoxia in vitro. BMC Neurosci 9:30

    PubMed Central  PubMed  Google Scholar 

  • Hoyert DL, Xu JQ (2012) Deaths: preliminary data for 2011. In National vital statistics reports. Hyattsville

    Google Scholar 

  • Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, Vandenbark AA, Offner H (2007) T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab 27:1798–1805

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Yoder MC (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760

    CAS  PubMed  Google Scholar 

  • Iskander A, Knight RA, Zhang ZG, Ewing JR, Shankar A, Varma NR, Bagher-Ebadian H, Ali MM, Arbab AS, Janic B (2013) Intravenous administration of human umbilical cord blood-derived AC133+ endothelial progenitor cells in rat stroke model reduces infarct volume: magnetic resonance imaging and histological findings. Stem Cells Transl Med 2:703–714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jang YK, Park JJ, Lee MC, Yoon BH, Yang YS, Yang SE, Kim SU (2004) Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells. J Neurosci Res 75:573–584

    CAS  PubMed  Google Scholar 

  • Janic B, Guo AM, Iskander AS, Varma NR, Scicli AG, Arbab AS (2010) Human cord blood-derived AC133+ progenitor cells preserve endothelial progenitor characteristics after long term in vitro expansion. PLoS ONE 5:e9173

    PubMed Central  PubMed  Google Scholar 

  • Jiang Q, Azuma E, Hirayama M, Iwamoto S, Kumamoto T, Kobayashi M, Yamamoto H, Sakurai M, Komada Y (2001) Functional immaturity of cord blood monocytes as detected by impaired response to hepatocyte growth factor. Ped Intl 43:334–339

    CAS  Google Scholar 

  • Jiang L, Newman M, Saporta S, Chen N, Sanberg C, Sanberg PR, Willing AE (2008) MIP-1α and MCP-1 Induce migration of human umbilical cord blood cells in models of stroke. Curr Neurovasc Res 5:118–124

    CAS  PubMed  Google Scholar 

  • Jiang L, Womble T, Saporta S, Chen N, Sanberg CD, Sanberg PR, Willing AE (2010) Human umbilical cord blood cells depress the microglial inflammatory response in vitro. Stem Cells Dev 19:221–227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang L, Saporta S, Chen N, Sanberg CD, Paul Sanberg PR, Alison Willing AE (2011) The effect of human umbilical cord blood cells on survival and cytokine production by post-ischemic astrocytes in vitro. Stem Cell Rev 6:523–531

    Google Scholar 

  • Jurga M, Markiewicz I, Sarnowska A, Habich A, Kozlowska H, Lukomska B, Buzanska L, Domanska-Janik K (2006) Neurogenic potential of human umbilical cord blood: neural-like stem cells depend on previous long-term culture conditions. J Neurosci Res 83:627–637

    CAS  PubMed  Google Scholar 

  • Juvela S (1995) Risk factors for impaired outcome after spontaneous intracerebral hemorrhage. Arch Neurol 52:1193–1200

    CAS  PubMed  Google Scholar 

  • Kawada H, Takizawa S, Takanashi T, Morita Y, Fujita J, Fukuda K, Takagi S, Okano H, Ando K, Hotta T (2006) Administration of hematopoietic cytokines in the subacute phase after cerebral infarction is effective for functional recovery facilitating proliferation of intrinsic neural stem/progenitor cells and transition of bone marrow-derived neuronal cells. Circulation 113:701–710

    CAS  PubMed  Google Scholar 

  • Khakoo AY, Finkel T (2005) Endothelial progenitor cells. Annu Rev Med 56:79–101

    CAS  PubMed  Google Scholar 

  • Kogler G, Radke TF, Lefort A, Sensken S, Fischer J, Sorg RV, Wernet P (2005) Cytokine production and hematopoiesis supporting activity of cord blood-derived unrestricted somatic stem cells. Exp Hematol 33:573–583

    PubMed  Google Scholar 

  • Koh SH, Kim KS, Choi MR, Jung KH, Park KS, Chai YG, Kim SH (2008) Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats. Brain Res 1229:233–248

    CAS  PubMed  Google Scholar 

  • Kozłowska H, Jabłonka J, Janowski M, Jurga M, Kossut M, Domańska-Janik K (2007) Transplantation of a novel human cord blood-derived neural-like stem cell line in a rat model of cortical infarct. Stem Cells Dev 16:481–488

    PubMed  Google Scholar 

  • Kriz J (2006) Inflammation in ischemic brain injury: timing is important. Crit Rev Neurobiol 18:145–157

    CAS  PubMed  Google Scholar 

  • Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27:2596–2605

    CAS  PubMed  Google Scholar 

  • Le T, Leung L, Carroll WL, Schibler KR (1997) Regulation of interleukin—10 gene expression: possible mechanisms accounting for its upregulation and for maturational differences in its expression by blood mononuclear cells. Blood 89:4112–4119

    CAS  PubMed  Google Scholar 

  • Leonardo C, Hall AA, Collier LA, Ajmo CT Jr, Willing AE, Pennypacker KR (2010) HUCB cell therapy blocks the morphological change and recruitment of CD11b-expressing, isolectin-binding proinflammatory cells after MCAO. J Neurosci Res 88:1213–1222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lim JY, Park SI, Oh JH, Kim SM, Jeong CH, Jun JA, Lee KS, Oh W, Lee JK, Jeun SS, Lim JY, Park SI, Oh JH, Kim SM, Jeong CH, Jun JA, Lee K-S, Oh W, Lee J-K, Jeun S-S (2008) Brain-derived neurotrophic factor stimulates the neural differentiation of human umbilical cord blood-derived mesenchymal stem cells and survival of differentiated cells through MAPK/ERK and PI3 K/Akt-dependent signaling pathways. J Neurosci Res 86:2168–2178

    CAS  PubMed  Google Scholar 

  • Liu CH, Hwang SM (2005) Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine 32:270–279

    CAS  PubMed  Google Scholar 

  • Liu E, Tu W, Law HKW, Lau Y-L (2001) Decreased yield, phenotypic expression and function of immature monocyte-derived dendritic cells in cord blood. Br J Haematol 113:240–246

    CAS  PubMed  Google Scholar 

  • Ma N, Ladilov Y, Moebius JM, Ong L, Piechaczek C, Dávid Á, Kaminski A, Choi Y-H, Li W, Egger D, Stamm C, Steinhoff G (2006) Intramyocardial delivery of human CD133+ cells in a SCID mouse cryoinjury model: bone marrow vs. cord blood-derived cells. Cardiovasc Res 71:158–169

    CAS  PubMed  Google Scholar 

  • MacLellan CL, Silasi G, Auriat AM, Colbourne F (2010) Rodent models of intracerebral hemorrhage. Stroke 41:95–98

    Google Scholar 

  • Makinen S, Kekarainen T, Nystedt J, Liimatainen T, Huhtala T, Narvanen A, Laine J, Jolkkonen J (2006) Human umbilical cord blood cells do not improve sensorimotor or cognitive outcome following transient middle cerebral artery occlusion in rats. Brain Res 1123:207–215

    PubMed  Google Scholar 

  • Martins AA, Paiva A, Morgado JM, Gomes A, Pais ML (2009) Quantification and immunophenotypic characterization of bone marrow and umbilical cord blood mesenchymal stem cells by multicolor flow cytometry. Transplant Proc 41:943–946

    CAS  PubMed  Google Scholar 

  • McGuckin CP, Pearce D, Forraz N, Tooze JA, Watt SM, Pettengell R (2003) Multiparametric analysis of immature cell populations in umbilical cord blood and bone marrow. Eur J Haematol 71:341–350

    PubMed  Google Scholar 

  • McGuckin CP, Forraz N, Baradez MO, Navran S, Zhao J, Urban R, Tilton R, Denner L (2005) Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif 38:245–255

    CAS  PubMed  Google Scholar 

  • Meier C, Middlelanis J, Wasielewski B, Neuhoff S, Roth-Haerer A, Gantert M, Dinse HR, Dermietzel R, Jensen A (2006) Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatr Res 59:244–249

    PubMed  Google Scholar 

  • Morgado JM, Pratas R, Laranjeira P, Henriques A, Crespo I, Regateiro F, Paiva A (2008) The phenotypical and functional characteristics of cord blood monocytes and CD14 (-/low)/CD16 (+) dendritic cells can be relevant to the development of cellular immune responses after transplantation. Transpl Immunol 19:55–63

    CAS  PubMed  Google Scholar 

  • Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nan Z, Grande A, Sanberg CD, Sanberg PR, Low WC (2005) Infusion of human umbilical cord blood amerlieorates neurologic deficits in rats with hemorrhagic brain injury. Ann NY Acad Sci 1049:84–96

    PubMed  Google Scholar 

  • Newcomb JD, Ajmo CT, Davis Sanberg C, Sanberg PR, Pennypacker KR, Willing AE (2006) Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant 15:213–223

    PubMed  Google Scholar 

  • Newman MB, Willing AE, Manresa JJ, Davis-Sanberg C, Sanberg PR (2005) Stroke induced migration of human umbilical cord blood: time course and cytokines. Stem Cells Dev 14:576–586

    CAS  PubMed  Google Scholar 

  • Newman MB, Willing AE, Manresa JJ, Davis Sanberg C, Sanberg PR (2006) Cytokines produced by cultured human umbilical cord blood (HUCB) cells: implications for brain repair. Exp Neurol 199:201–208

    CAS  PubMed  Google Scholar 

  • Nih LR, Deroide N, Lere-Dean C, Lerouet D, Soustrat M, Levy BI, Silvestre JS, Merkulova-Rainon T, Pocard M, Margaill I, Kubis N (2012) Neuroblast survival depends on mature vascular network formation after mouse stroke: role of endothelial and smooth muscle progenitor cell co-administration. Eur J Neurosci 35:1208–1217

    PubMed  Google Scholar 

  • NINDS_rtPA_Stroke_Study_Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Eng J Med 333:1581–1587

    Google Scholar 

  • Nystedt J, Makinen S, Laine J, Jolkkonen J (2006) Human cord blood CD34+ cells and behavioral recovery following focal cerebral ischemia in rats. Acta Neurobiol Exp (Wars) 66:293–300

    Google Scholar 

  • Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD (2006a) Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab 26:654–665

    CAS  PubMed  Google Scholar 

  • Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD (2006b) Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab 26:654–665

    CAS  PubMed  Google Scholar 

  • Ong LM, Fan X, Chu PPY, Gay FPH, Bari S, Ang JML, Li Z, Chen J, Lim SK, Bunte RM, Hwang WYK (2012) Cotransplantation of ex vivo expanded and unexpanded cord blood units in immunodeficient mice using insulin growth factor binding protein-2-augmented mesenchymal cell cocultures. Biol Blood Marrow Transplant 18:674–682

    CAS  PubMed  Google Scholar 

  • Park KS, Kim YS, Kim JH, Choi BK, Kim SH, Oh SH, Ahn YR, Lee MS, Lee MK, Park JB, Kwon CH, Joh JW, Kim KW, Kim SJ (2009) Influence of human allogenic bone marrow and cord blood-derived mesenchymal stem cell secreting trophic factors on ATP (adenosine—5’-triphosphate)/ADP (adenosine—5’-diphosphate) ratio and insulin secretory function of isolated human islets from cadaveric donor. Transplant Proc 41:3813–3818

    CAS  PubMed  Google Scholar 

  • Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MAS, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34 (+) cells identifies a population of functional endothelial precursors. Blood 95:952–958

    CAS  PubMed  Google Scholar 

  • Pimentel-Coelho PM, Magalhães ES, Lopes LM, deAzevedo LC, Santiago MF, Mendez-Otero R (2009) Human cord blood transplantation in a neonatal rat model of hypoxic-ischemic brain damage: functional outcome related to neuroprotection in the striatum. Stem Cells Dev 19:351–358

    Google Scholar 

  • Riegelsberger U-M, Deten A, Pösel C, Zille M, Kranz A, Boltze J, Wagner D-C (2011) Intravenous human umbilical cord blood transplantation for stroke: Impact on infarct volume and caspase-3-dependent cell death in spontaneously hypertensive rats. Exp Neurol 227:218–223

    PubMed  Google Scholar 

  • Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, Peterson PK (2004) Role of microglia in central nervous system infections. Clin Microbiol Rev 17:942–964 (table of contents)

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenkranz K, Meier C (2011) Umbilical cord blood cell transplantation after brain ischemia-from recovery of function to cellular mechanisms. Ann Anat 193:371–379

    PubMed  Google Scholar 

  • Rosenkranz K, Kumbruch S, Tenbusch M, Marcus K, Marschner K, Dermietzel R, Meier C (2012) Transplantation of human umbilical cord blood cells mediated beneficial effects on apoptosis, angiogenesis and neuronal survival after hypoxic-ischemic brain injury in rats. Cell Tissue Res 348:429–438

    CAS  PubMed  Google Scholar 

  • Rowe DD, Leonardo CC, Hall AA, Shahaduzzaman MD, Collier LA, Willing AE, Pennypacker KR (2010) Cord blood administration induces oligodendrocyte survival through alterations in gene expression. Brain Res 1366:172–188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rowe DD, Leonardo CC, Recio JA, Collier LA, Willing AE, Pennypacker KR (2012) Human umbilical cord blood cells protect oligodendrocytes from brain ischemia through Akt signal transduction. J Biol Chem 287:4177–4187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanberg PR, Willing AE, Garbuzova-Davis S, Saporta S, Liu G, Sanberg CD, Bickford PC, Klasko SK, El-Badri NS (2005) Umbilical cord blood-derived stem cells and brain repair. Ann NY Acad Sci 1049:67–83

    CAS  PubMed  Google Scholar 

  • Sanchez-Ramos JR, Song S, Kamath SG, Zigova T, Willing A, Cardozo-Pelaez F, Stedeford T, Chopp M, Sanberg PR (2001) Expression of neural markers in human umbilical cord blood. Exp Neurol 171:109–115

    CAS  PubMed  Google Scholar 

  • Schabitz WR, Kollmar R, Schwaninger M, Juettler E, Bardutzky J, Scholzke MN, Sommer C, Schwab S (2003) Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke 34:745–751

    PubMed  Google Scholar 

  • Schroeter M, Jander S, Witte OW, Stoll G (1994) Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion. J Neuroimmunol 55:195–203

    CAS  PubMed  Google Scholar 

  • Seghatoleslam M, Jalali M, Nikravesh MR, Hamidi Alamdari D, Hosseini M, Fazel A (2013) Intravenous administration of human umbilical cord blood-mononuclear cells dose-dependently relieve neurologic deficits in rat intracerebral hemorrhage model. Ann Anat 195:39–49

    Google Scholar 

  • Seifert HA, Hall AA, Chapman CB, Collier LA, Willing AE, Pennypacker KR (2012) A transient decrease in spleen size following stroke corresponds to splenocyte release into systemic circulation. J Neuroimmune Pharmacol 7:1017–1024

    PubMed Central  PubMed  Google Scholar 

  • Shahaduzzaman M, Golden JE, Green S, Gronda AE, Adrien E, Ahmed A, Sanberg PR, Bickford PC, Gemma C, Willing AE (2013) A single administration of human umbilical cord blood T cells produces long-lasting effects in the aging hippocampus. Age (Dordr) 35:2071–2087

    CAS  Google Scholar 

  • Shang J, Deguchi K, Ohta Y, Liu N, Zhang X, Tian F, Yamashita T, Ikeda Y, Matsuura T, Funakoshi H, Nakamura T, Abe K (2011) Strong neurogenesis, angiogenesis, synaptogenesis, and antifibrosis of hepatocyte growth factor in rats brain after transient middle cerebral artery occlusion. J Neurosci Res 89:86–95

    CAS  PubMed  Google Scholar 

  • Shen J, Ishii Y, Xu G, Dang TC, Hamashima T, Matsushima T, Yamamoto S, Hattori Y, Takatsuru Y, Nabekura J, Sasahara M (2012) PDGFR-beta as a positive regulator of tissue repair in a mouse model of focal cerebral ischemia. J Cereb Blood Flow Metab 32:353–367

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smirkin A, Matsumoto H, Takahashi H, Inoue A, Tagawa M, Ohue S, Watanabe H, Yano H, Kumon Y, Ohnishi T, Tanaka J (2010) Iba1+/NG2+ macrophage-like cells expressing a variety of neuroprotective factors ameliorate ischemic damage of the brain. J Cereb Blood Flow Metab 30:603–615

    CAS  PubMed Central  PubMed  Google Scholar 

  • Solomon EP, Berg LR, Martin DW (1999) Biology. Saunders College Publishing, Orlando

    Google Scholar 

  • Stevens SL, Bao J, Hollis J, Lessov NS, Clark WM, Stenzel-Poore MP (2002) The use of flow cytometry to evaluate temporal changes in inflammatory cells following focal cerebral ischemia in mice. Brain Res 932:110–119

    CAS  PubMed  Google Scholar 

  • Sun W, Buzanska L, Domanska-Janik K, Salvi RJ, Stachowiak MK (2005) Voltage-sensitive and ligand-gated channels in differentiating neural stem-like cells derived from the nonhematopoietic fraction of human umbilical cord blood. Stem Cells 23:931–945

    CAS  PubMed  Google Scholar 

  • Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R, Pittet MJ (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325:612–616

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H, Tsukamoto Y, Iso H, Fujimori Y, Stern DM, Naritomi H, Matsuyama T (2004) Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest 114:330–338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ (2010) Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol 9:167–176

    PubMed  Google Scholar 

  • Van Furth R, Cohn ZA (1968) The origin and kinetics of mononuclear phagocytes. J Exp Med 128:415–435

    PubMed Central  PubMed  Google Scholar 

  • Van Voorhis WC, Valinsky J, Hoffman E, Luban J, Hair LS, Steinman RM (1983) Relative efficacy of human monocytes and dendritic cells as accessory cells for T cell replication. J Exp Med 158:174–191

    PubMed  Google Scholar 

  • Vanneaux V, El-Ayoubi F, Delmau C, Driancourt C, Lecourt S, Grelier A, Cras A, Cuccuini W, Soulier J, Lataillade JJ, Lebousse-Kerdiles MC, Oury JF, Sibony O, Marolleau JP, Benbunan M, Uzan G, Larghero J (2010) In vitro and in vivo analysis of endothelial progenitor cells from cryopreserved umbilical cord blood: are we ready for clinical application? Cell Transplant 19:1143–1155

    PubMed  Google Scholar 

  • Vendrame M, Cassady CJ, Newcomb J, Butler T, Pennypacker KR, Zigova T, Davis Sanberg C, Sanberg PR, Willing AE (2004) Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke 35:2390–2395

    PubMed  Google Scholar 

  • Vendrame M, Gemma C, De Mesquita D, Collier L, Bickford PC, Davis Sanberg C, Sanberg PR, Pennypacker KR, Willing AE (2005) Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells Dev 14:595–604

    CAS  PubMed  Google Scholar 

  • Vendrame M, Gemma C, Pennypacker KR, Bickford PC, Davis Sanberg C, Sanberg PR, Willing AE (2006) Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol 199:191–200

    CAS  PubMed  Google Scholar 

  • Walczak P, Chen N, Hudson J, Zigova T, Sanchez-Ramos J, Sanberg PR, Willing AE (2007) Long-term cultured human umbilical cord neural-like cells transplanted into the striatum of NOD SCID mice. Brain Res Bull 14:155–163

    Google Scholar 

  • Walton M, Brown R, Gupta G, Joneckis C, Llave R (1996) Activase for Acute Ischemic stroke. Summary Basis for Approval. www.fda.gov

    Google Scholar 

  • Wang J, Tang Y, Zhang W, Zhao H, Wang R, Yan Y, Xu L, Li P (2013a) Insulin-like growth factor-1 secreted by brain microvascular endothelial cells attenuates neuron injury upon ischemia. Febs J 280:3658–3668

    CAS  PubMed  Google Scholar 

  • Wang X-L, Zhao Y-S, Hu M-Y, Sun Y-Q, Chen Y-X, Bi X-H (2013b) Umbilical cord blood cells regulate endogenous neural stem cell proliferation via hedgehog signaling in hypoxic ischemic neonatal rats. Brain Res 1518:26–35

    CAS  PubMed  Google Scholar 

  • Weber C, Belge KU, von Hundelshausen P, Draude G, Steppich B, Mack M, Frankenberger M, Weber KS, Ziegler-Heitbrock HW (2000) Differential chemokine receptor expression and function in human monocyte subpopulations. J Leukocyte Biol 67:699–704

    CAS  PubMed  Google Scholar 

  • Wedgwood JF, Weinberger BI, Hatam L, Palmer R (1997) Umbilical cord blood lacks circulating B lymphocytes expressing surface IgG or IgA. Clin Immunol Immunopathol 84:276–282

    CAS  PubMed  Google Scholar 

  • Whedon MB, Wujcik D (eds) (1997) Blood and marrow stem cell transplantation: principles, practice, and nursing insights, 2nd edn. Jones & Bartlett Learning, Sudbury

    Google Scholar 

  • Willing AE, Lixian J, Milliken M, Poulos S, Zigova T, Song S, Hart C, Sanchez-Ramos J, Sanberg PR (2003) Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res 73:296–307

    CAS  PubMed  Google Scholar 

  • Willing AE, Garbuzova-Davis SN, Zayko O, Derasari HM, Rawls AE, James CR, Mervis RF, Sanberg CD, Kuzmin-Nichols N, Sanberg PR (In Press) Repeated administrations of human umbilical cord blood cells improve disease outcomes in a mouse model of Sanfilippo Syndrome Type III B. Cell Transplant

    Google Scholar 

  • Womble TA, Green S, Shahaduzzaman M, Grieco J, Sanberg PR, Pennypacker KR, Willing AE (2014) Monocytes are essential for the neuroprotective effect of human cord blood cells following middle cerebral artery occlusion in rat. Mol Cell Neurosci 59:76–84

    CAS  PubMed  Google Scholar 

  • Xia G, Hong X, Chen X, Lan F, Zhang G, Liao L (2010) Intracerebral transplantation of mesenchymal stem cells derived from human umbilical cord blood alleviates hypoxic ischemic brain injury in rat neonates. J Perinat Med 38:215–221

    PubMed  Google Scholar 

  • Yang W-Z, Zhang Y, Wu F, Min W-P, Minev B, Zhang M, Luo X-L, Ramos F, Ichim TE, Riordan NH, Hu X (2010) Safety evaluation of allogeneic umbilical cord blood mononuclear cell therapy for degenerative conditions. J Transl Med 8:75

    PubMed Central  PubMed  Google Scholar 

  • Yasuhara T, Hara K, Maki M, Xu L, Yu G, Ali MM, Masuda T, Yu SJ, Bae EK, Hayashi T, Matsukawa N, Kaneko Y, Kuzmin-Nichols N, Ellovitch S, Cruz EL, Klasko SK, Sanberg CD, Sanberg PR, Borlongan CV (2010a) Mannitol facilitates neurotrophic factor up-regulation and behavioural recovery in neonatal hypoxic-ischaemic rats with human umbilical cord blood grafts. J Cell Mol Med 14:914–921

    CAS  PubMed  Google Scholar 

  • Yasuhara T, Hara K, Maki M, Xu L, Yu G, Ali MM, Masuda T, Yu SJ, Bae EK, Hayashi T, Matsukawa N, Kaneko Y, Kuzmin-Nichols N, Ellovitch S, Cruz EL, Klasko SK, Sanberg CD, Sanberg PR, Borlongan CV (2010b) Mannitol facilitates neurotrophic factor up-regulation and behavioural recovery in neonatal hypoxic-ischaemic rats with human umbilical cord blood grafts. J Cell Mol Med 14:914–921

    CAS  PubMed  Google Scholar 

  • Zawadzka M, Lukasiuk K, Machaj EK, Pojda K, Kaminska B (2009) Lack of migration and neurological benefits after infusion of umbilical cord blood cells in ischemic brain injury. Acta Neurobiol Exp 69:46–51

    Google Scholar 

  • Zhang MJ, Sun JJ, Qian L, Liu Z, Zhang Z, Cao W, Li W, Xu Y (2011) Human umbilical mesenchymal stem cells enhance the expression of neurotrophic factors and protect ataxic mice. Brain Res 1402:122–131

    CAS  PubMed  Google Scholar 

  • Zhao Y, Wang H, Mazzone T (2006) Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Exp Cell Res 312:2454–2464

    CAS  PubMed  Google Scholar 

  • Zhu W, Mao Y, Zhao Y, Zhou L-F, Wang Y, Zhu J-H, Zhu Y, Yang G-Y (2005) Transplantation of vascular endothelial growth factor-transfected neural stem cells into the rat brain provides neuroprotection after transient focal cerebral ischemia. Neurosurgery 57:325–333 (discussion 325–333)

    PubMed  Google Scholar 

  • Ziegler-Heitbrock HW, Strobel M, Kieper D, Fingerle G, Schlunck T, Petersmann I, Ellwart J, Blumenstein M, Haas JG (1992) Differential expression of cytokines in human blood monocyte subpopulations. Blood 79:503–511

    CAS  PubMed  Google Scholar 

  • Zigova T, Song S, Willing AE, Hudson JE, Newman MB, Saporta S, Sanchez-Ramos J, Sanberg PR (2002) Human umbilical cord blood cells express neural antigens after transplantation into the developing rat brain. Cell Transplant 11:265–274

    PubMed  Google Scholar 

  • Zivin JA (1985) Cyproheptadine reduces or prevents ischemic central nervous system damage. Neurol 35:584–587

    CAS  Google Scholar 

  • Zwart I, Hill AJ, Al-Allaf F, Shah M, Girdlestone J, Sanusi ABR, Mehmet H, Navarrete R, Navarrete C, Jen L-S (2009) Umbilical cord blood mesenchymal stromal cells are neuroprotective and promote regeneration in a rat optic tract model. Exp Neurol 216:439–448

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison E. Willing Ph.D. .

Editor information

Editors and Affiliations

Conclusions

Conclusions

The evidence presented suggests that the UCB cells have a great deal of potential as a future treatment for stroke, both ischemic and hemorrhagic, in young and adult alike. By virtue of the fact that they are living cells producing a variety of different factors, these cells have been shown to have pleiotropic effects. However, the stroke field is rife with examples of promising pre-clinical experimental treatments that have not panned out in clinical trial. There are studies which have not reproduced these positive outcomes in both adult models (Makinen et al. 2006; Nystedt et al. 2006; Zawadzka et al. 2009; Riegelsberger et al. 2011) and neonatal models (De Paula et al. 2009). There are no obvious differences between these studies and the studies presented earlier showing therapeutic benefit although extensive protocols for cell preparation and storage are not provided in most reports. It is imperative that we understand why these differences exist and their implications for the long-term success of this cell therapy.

There are also other questions that will need to be addressed as we move toward the clinic. The cells appear to be efficacious across the lifespan, but it is too early to draw that conclusion. Almost all of the studies in the adult are in younger adults and not the aged. While the cells have a demonstrated ability to increase proliferation in the subgranular zone of the hippocampus and increase density of dendritic spines (Bachstetter et al. 2008; Shahaduzzaman et al. 2013) in the aged rat, they have not yet been shown to improve stroke outcome in an aged animal.

All the studies discussed here have used human cells in a rodent model of stroke. Xenografting has its own immunologic issues. It is not particularly surprising that the UCB cells are rarely observed surviving in the host even when very stringent immune suppression protocols are employed; it is, perhaps, more surprising that the cells still seem to have such profound effects. When these cells are administered to a human stroke patient, however, it is not clear how much immune suppression or HLA matching will be required. These studies are best addressed in a larger animal model. There is one report in which 114 patients suffering from with 13 varied neurologic injuries or diseases all received allogeneic UCB MSC transplants with no preconditioning, HLA matching or immune suppression (Yang et al. 2010). All hematologic and immunologic parameters and serum chemistries were in the normal range for these patients. The worst adverse events reported were 3 % of the patients experienced headaches and 1 % developed a fever. There was no report on whether any of the patients experiences any benefit from the treatment and the number of patients with any specific neurologic condition was small. Further studies are still needed.

Even given these caveats, the bulk of the evidence suggests that UCB cells may have therapeutic benefit. Multiple groups using different models of cerebral ischemia and hemorrhage , different UCB cell preparations, different routes, different cell doses, differences in timing of cell delivery and different tests of motor and cognitive function have demonstrated efficacy of this experimental treatment. Cautious optimism is warranted as preclinical testing and future clinical trials move forward.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Willing, A., Foran, E. (2015). Cord Blood as a Treatment for Stroke. In: Zhao, LR., Zhang, J. (eds) Cellular Therapy for Stroke and CNS Injuries. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-11481-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11481-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11480-4

  • Online ISBN: 978-3-319-11481-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics