Skip to main content

Integer Vector Addition Systems with States

  • Conference paper
Reachability Problems (RP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8762))

Included in the following conference series:

Abstract

This paper studies reachability, coverability and inclusion problems for Integer Vector Addition Systems with States (ℤ-VASS) and extensions and restrictions thereof. A ℤ-VASS comprises a finite-state controller with a finite number of counters ranging over the integers. Although it is folklore that reachability in ℤ-VASS is NP-complete, it turns out that despite their naturalness, from a complexity point of view this class has received little attention in the literature. We fill this gap by providing an in-depth analysis of the computational complexity of the aforementioned decision problems. Most interestingly, it turns out that while the addition of reset operations to ordinary VASS leads to undecidability and Ackermann-hardness of reachability and coverability, respectively, they can be added to ℤ-VASS while retaining NP-completeness of both coverability and reachability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, P., Potapov, I.: On undecidability bounds for matrix decision problems. Theor. Comput. Sci. 391(1-2), 3–13 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borosh, I., Treybing, L.B.: Bounds on positive integral solutions of linear Diophantine equations. Proc. AMS 55, 299–304 (1976)

    Article  MATH  Google Scholar 

  3. Buckheister, P., Zetzsche, G.: Semilinearity and context-freeness of languages accepted by valence automata. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 231–242. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Esparza, J.: Petri nets, commutative context-free grammars, and basic parallel processes. Fundam. Inform. 31(1), 13–25 (1997)

    MathSciNet  MATH  Google Scholar 

  6. Finkel, A., Göller, S., Haase, C.: Reachability in register machines with polynomial updates. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 409–420. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Fraca, E., Haddad, S.: Complexity analysis of continuous petri nets. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 170–189. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    Google Scholar 

  9. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas and languages. Pac. J. Math. 16(2), 285–296 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grädel, E.: Dominoes and the complexity of subclasses of logical theories. Ann. Pure Appl. Logic 43(1), 1–30 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter machines. Theor. Comput. Sci. 7(3), 311–324 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Haase, C.: Subclasses of Presburger arithmetic and the weak EXP hierarchy. In: Proc. CSL-LICS (to appear, 2014)

    Google Scholar 

  13. Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in succinct and parametric one-counter automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 369–383. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Hack, M.: The equality problem for vector addition systems is undecidable. Theor. Comput. Sci. 2(1), 77–95 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hague, M., Lin, A.W.: Model checking recursive programs with numeric data types. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 743–759. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Huynh, D.T.: The complexity of equivalence problems for commutative grammars. Inform. Control 66(1-2), 103–121 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huynh, D.T.: A simple proof for the \({\Sigma}^p_2\) upper bound of the inequivalence problem for semilinear sets. Elektron. Inform. Kybernet. 22(4), 147–156 (1986)

    MathSciNet  MATH  Google Scholar 

  18. Jančar, P.: Nonprimitive recursive complexity and undecidability for Petri net equivalences. Theor. Comput. Sci. 256(1-2), 23–30 (2001)

    Article  MATH  Google Scholar 

  19. Kopczyński, E., To, A.W.: Parikh images of grammars: Complexity and applications. In: Proc. LICS, pp. 80–89 (2010)

    Google Scholar 

  20. Lipton, R.: The reachability problem is exponential-space-hard. Technical report, Yale University, New Haven, CT (1976)

    Google Scholar 

  21. Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: Proc. STOC, pp. 238–246. ACM, New York (1981)

    Google Scholar 

  22. Plandowski, W., Rytter, W.: Complexity of language recognition problems for compressed words. In: Karhumäki, J., Maurer, H.A., Păun, G., Rozenberg, G. (eds.) Jewels are Forever, pp. 262–272 (1999)

    Google Scholar 

  23. Rackoff, C.: The covering and boundedness problems for vector addition systems. Theor. Comput. Sci. 6(2), 223–231 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. Reichert, J.: On the complexity of counter reachability games. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp. 196–208. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Schnoebelen, P.: Revisiting ackermann-hardness for lossy counter machines and reset petri nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 616–628. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. Seidl, H., Schwentick, T., Muscholl, A., Habermehl, P.: Counting in trees for free. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1136–1149. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Haase, C., Halfon, S. (2014). Integer Vector Addition Systems with States. In: Ouaknine, J., Potapov, I., Worrell, J. (eds) Reachability Problems. RP 2014. Lecture Notes in Computer Science, vol 8762. Springer, Cham. https://doi.org/10.1007/978-3-319-11439-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11439-2_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11438-5

  • Online ISBN: 978-3-319-11439-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics