Skip to main content

Persistent Reeb Graph Matching for Fast Brain Search

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8679))

Included in the following conference series:

Abstract

In this paper we propose a novel algorithm for the efficient search of the most similar brains from a large collection of MR imaging data. The key idea is to compactly represent and quantify the differences of cortical surfaces in terms of their intrinsic geometry by comparing the Reeb graphs constructed from their Laplace-Beltrami eigenfunctions. To overcome the topological noise in the Reeb graphs, we develop a progressive pruning and matching algorithm based on the persistence of critical points. Given the Reeb graphs of two cortical surfaces, our method can calculate their distance in less than 10 milliseconds on a PC. In experimental results, we apply our method on a large collection of 1326 brains for searching, clustering, and automated labeling to demonstrate its value for the “Big Data” science in human neuroimaging.

This work was supported by NIH grants K01EB013633 and P41EB015922.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mueller, S., Weiner, M., Thal, L., Petersen, R.C., Jack, C., Jagust, W., Trojanowski, J.Q., Toga, A.W., Beckett, L.: The Alzheimer’s disease neuroimaging initiative. Clin. North Am. 15, 869–877, xi–xii (2005)

    Google Scholar 

  2. Essen, D.V., Ugurbil, K., et al.: The human connectome project: A data acquisition perspective. NeuroImage 62(4), 2222–2231 (2012)

    Article  Google Scholar 

  3. Toga, A., Clark, K., Thompson, P., Shattuck, D., Van Horn, J.: Mapping the human connectome. Neurosurgery 71(1), 1–5 (2012)

    Article  Google Scholar 

  4. Van Horn, J.D., Toga, A.: Human neuroimaging as a “Big Data” science. Brain Imaging and Behavior, 1–9 (2013)

    Google Scholar 

  5. Reuter, M., Wolter, F.E., Shenton, M., Niethammer, M.: Laplace-beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis. Computer-Aided Design 41(10), 739–755 (2009)

    Article  Google Scholar 

  6. Shi, Y., Lai, R., Toga, A.: Cortical surface reconstruction via unified Reeb analysis of geometric and topological outliers in magnetic resonance images. IEEE Trans. Med. Imag. (3), 511–530 (2013)

    Google Scholar 

  7. Edelsbrunner, Letscher, Zomorodian: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lee, H., Kang, H., Chung, M., Kim, B.N., Lee, D.S.: Persistent brain network homology from the perspective of dendrogram. IEEE Trans. Med. Imag. 31(12), 2267–2277 (2012)

    Article  Google Scholar 

  9. Rustamov, R.M.: Laplace-beltrami eigenfunctions for deformation invariant shape representation. In: Proc. Eurograph. Symp. on Geo. Process., pp. 225–233 (2007)

    Google Scholar 

  10. Shi, Y., Lai, R., Toga, A.W.: Conformal mapping via metric optimization with application for cortical label fusion. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 244–255. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Reeb, G.: Sur les points singuliers d’une forme de Pfaff completement integrable ou d’une fonction nemérique. Comptes Rendus Acad. Sciences 222, 847–849 (1946)

    MATH  MathSciNet  Google Scholar 

  12. Klein, A., Tourville, J.: 101 labeled brain images and a consistent human cortical labeling protocol. Frontiers in Neuroscience 6(171) (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Shi, Y., Li, J., Toga, A.W. (2014). Persistent Reeb Graph Matching for Fast Brain Search. In: Wu, G., Zhang, D., Zhou, L. (eds) Machine Learning in Medical Imaging. MLMI 2014. Lecture Notes in Computer Science, vol 8679. Springer, Cham. https://doi.org/10.1007/978-3-319-10581-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10581-9_38

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10580-2

  • Online ISBN: 978-3-319-10581-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics