Skip to main content

Abstract

We show that given any μ > 1, an equilibrium x of a dynamic system

$$\displaystyle{ x_{n+1} = f(x_{n}) }$$
(1)

can be robustly stabilized by a nonlinear control

$$\displaystyle{ u = -\sum _{j=1}^{N-1}\varepsilon _{ j}\left (f\left (x_{n-j+1}\right ) - f\left (x_{n-j}\right )\right ),\,\vert \varepsilon _{j}\vert < 1,\;j = 1,\ldots,N - 1, }$$
(2)

for f (x) ∈ (−μ, 1). The magnitude of the minimal value N is of order \(\sqrt{\mu }.\) The optimal explicit strength coefficients are found using extremal nonnegative Fejér polynomials. The case of a cycle as well as numeric examples and applications to mathematical biology are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amann, A., Scholl, E., Just, W.: Some basic remarks on eigenmode expansions of time-delay dynamics. Physica A 373, 191 (2007)

    Article  Google Scholar 

  2. Bielawski, S., Derozier, D., Glorieux, P.: Controlling unstable periodic orbits by a delayed continuous feedback. Phys. Rev. E 49, R971 (1994)

    Article  Google Scholar 

  3. Bleich, M.E., Socolar, J.E.S.: Stability of periodic orbits controlled by time-delay feedback. Phys. Lett. A 210, 87 (1996)

    Article  Google Scholar 

  4. Borwein, J., Bailey, D.: Mathematics by Experiment: Plausible Reasoning in the 21st Century. A K Peters, Wellesley, MA (2003)

    Google Scholar 

  5. Dimitrov, D.: Extremal positive trigonometric polynomials. In: Bojoanov, B. (ed.) Approximation Theory: A Volume Dedicated to Blagovest Sendov. DARBA, Sofia (2002)

    Google Scholar 

  6. Dahms, T., Hovel, P., Scholl, E.: Control of unstable steady states by extended time-delayed feedback. Phys. Rev. E 76, 056201 (2007)

    Article  MathSciNet  Google Scholar 

  7. Dmitrishin, D., Khamitova, A.: Methods of harmonic analysis in nonlinear dynamics. Comptes Rendus Mathematique 351(9–10), 367–370 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fejér, L.: Ueber trigonometrische polynome. J. Reine Angew. Math. 146, 53–82 (1915)

    MATH  Google Scholar 

  9. Fejér, L.: Sur les fonctions bornées et intégrables. C. R. Acad. Sci. Paris 131, 984–987 (1900)

    Google Scholar 

  10. Fejér, L.: Sur les polynomes trigonométriques. C. R. Acad. Sci. Paris 157, 571–574 (1913)

    MATH  Google Scholar 

  11. Fiedler, B., Flunkert, V., Georgi, M., Hövel, P., Schöll, E.: Refuting the odd number limitation of time-delayed feedback control. Phys. Rev. Lett. 98, 114101 (2007)

    Article  Google Scholar 

  12. Fiedler, B., Yanchuk, S., Flunkert, V., Hovel, P., Wunsche, H.J., Scholl, E.: Delay stabilization of rotating waves near fold bifurcation and application toall-optical control of a semiconductor laser. Phys. Rev. E 77, 066207 (2008)

    Article  MathSciNet  Google Scholar 

  13. Gauthier, D.J.: Resource letter: Controlling chaos. Am. J. Phys. 71, 750 (2003)

    Article  Google Scholar 

  14. Hovel, P., Socolar, J.E.S.: Stability domains for time-delay feedback control with latency. Phys. Rev. E 68, 036206 (2003)

    Article  Google Scholar 

  15. Hovel, P., Scholl, E.: Control of unstable steady states by time-delayed feedback methods. Phys. Rev. E 72, 046203 (2005)

    Article  Google Scholar 

  16. Just, W., Benner, H., Scholl, E.: Control of chaos by time-delayed feedback: a survey of theoretical and experimental aspects. In: Kramer, B. (ed.), Advances in Solid State Phyics, vol. 43, pp. 589–603. Springer, Berlin (2003)

    Chapter  Google Scholar 

  17. Just, W., Bernard, T., Ostheimer, M., Reibold, E., Benner, H.: Mechanism of time-delayed feedback control. Phys. Rev. Lett. 78, 203 (1997).

    Article  Google Scholar 

  18. Just, W., Fiedler, B., Flunkert, V., Georgi, M., Hovel, A., Scholl, E.: Beyond odd number limitation: a bifurcation analysis of time-delayed feedback control. Phys. Rev. E 76, 026210 (2007)

    Article  MathSciNet  Google Scholar 

  19. Li, T.-Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82(10), 985–992 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  20. Morgul, Ö.: Further stability results for a generalization of delayed feedback control. Nonlinear Dyn. 70(2), 1255–1262 (2012)

    Article  MathSciNet  Google Scholar 

  21. Murray, I.D.: Mathematical Biology: An Introduction, 3rd edn., Springer, New York (2002)

    Google Scholar 

  22. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Polya, G., Szegö, G.: Problems and Theorems in Analysis II: Theory of Functions, Zeros, Polynomials, Determinants, Number Theory, Geometry. Springer, Berlin (1998)

    MATH  Google Scholar 

  24. Polyak, B.T.: Stabilizing chaos with predictive control. Autom. Rem. Control. 66(11), 1791–1804 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pyragas, K.: Analytical properties and optimization of time-delayed feedback control. Phys. Rev. E 66, 26207 (2002)

    Article  Google Scholar 

  26. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. 170A, 421–428 (1992)

    Article  Google Scholar 

  27. Pyragas, K.: Delayed feedback control of chaos. Phil. Trans. R. Soc. A 364(1846), 2309–2334 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Scholl, E., Hovel, P., Flunkert, V., Dahlem, M.A., Nakajima, H.: On analytical properties of delayed feedback control of chaos. Phys. Lett. A 232, 207 (1997)

    Article  MathSciNet  Google Scholar 

  29. Scholl, E., Schuster, H.G. (eds.), Handbook of Chaos Control. Wiley, Weinheim (2008), second completely revised and enlarged edition

    Google Scholar 

  30. Sharkovsky, A.M.: Co-existence of cycles of a continuous mapping of a line onto itself. Ukrainian Math. Z. 16, 61–71 (1964)

    Google Scholar 

  31. Socolar, J.E.S., Sukow, D.W., Gauthier, D.J.: Stabilizing unstable periodic orbits in fast dynamical systems. Phys. Rev. E 50, 3245 (1994)

    Article  Google Scholar 

  32. Socolar, J.E.S., Gauthier, D.J.: Analysis and comparison of multiple-delay schemes for controlling unstable fixed points of discrete maps. Phys. Rev. E 57, 6589 (1998)

    Article  Google Scholar 

  33. Ushio, T., Yamamoto, S.: Prediction-based control of chaos. Phys. Lett. A 264, 30–35 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. Ushio, T., Yamamoto, S.: Prediction-based control in chaotic discrete-time systems decision and control, 1999. In: Proceedings of the 38th IEEE Conference on Decision and Control, vol. 2, pp. 2053–2054 (1999)

    Google Scholar 

  35. Ushio, T.: Limitation of delayed feedback control in nonlinear discrete-time systems. IEEE Trans. Circ. Syst. 43 815–816 (1996)

    Article  Google Scholar 

  36. Vieira, D.S.M., Lichtenberg, A.J.: Controlling chaos using nonlinear feedback with delay. Phys. Rev. E 54, 1200–1207 (1996)

    Article  Google Scholar 

  37. Yamamoto, S., Hino, T., Ushio, T.: Dynamic delayed feedback controllers for chaotic discrete-time systems. IEEE Trans. Circ. Syst. I 48(6), 785–789 (2001)

    Article  MATH  Google Scholar 

  38. Yanchuk, S., Wolfrum, M., Hovel, P., Scholl, E.: Control of unstable steady states by long delay feedback. Phys. Rev. E 74, 026201 (2006)

    Article  MathSciNet  Google Scholar 

  39. Zhu, J., Tian, Y.-P.: Necessary and sufficient condition for stabiilizability of discrete-time systems via delayed feedback control. Phys. Lett. A 343, 95–107 (2005)

    Article  MATH  Google Scholar 

  40. Zubov, V.I.: Vibrations in non-linear and controlled systems. Gos. Sojuz. Izdat. Sudostroitel. Promyshl. Leningrad, 631 pp, MR0155073 (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Stokolos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dmitrishin, D., Khamitova, A., Stokolos, A.M. (2014). Fejér Polynomials and Chaos. In: Georgakis, C., Stokolos, A., Urbina, W. (eds) Special Functions, Partial Differential Equations, and Harmonic Analysis. Springer Proceedings in Mathematics & Statistics, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-319-10545-1_7

Download citation

Publish with us

Policies and ethics