Skip to main content

Electrode Materials: State-of-the-Art and Experiments

  • Chapter
  • First Online:
Stimulation and Recording Electrodes for Neural Prostheses

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC,volume 78))

Abstract

Platinum is the most commonly used electrode material. The charge injection limit for platinum electrodes was found to be 400 μC∕cm2 in [4]. Tim Boretius et al. have reported a value of only 75 μC∕cm2 [3]. Platinum electrodes have proven success in practice, for example in many cochlear implants. Because of their relatively low charge injection capacity, they are usually used where large electrodes are applicable as in intracortical implant [8]. The limit for neural stimulation regarding tissue safety has been determined to be 1 mC∕cm2. In order to increase the charge injection capacity of platinum, various approaches have been proposed in the past few decades, like the galvanization of platinum black or gray. Although platinum black possesses a highly porous layer and therefore high charge injection capacity, its deposition often requires a lead containing electrolyte which limits its application because of cytotoxicity concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beebe X, Rose TL (1988) Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline (neurological stimulation application). Biomedical Engineering, IEEE Transactions on 35(6):494–495, DOI 10.1109/10.2122

    Article  Google Scholar 

  2. Bellanger G, Rameau JJ (1995) Corrosion of titanium nitride deposits on AISI 630 stainless steel used in radioactive water with and without chloride at pH 11. Electrochimica Acta 40(15):2519–2532, DOI 10.1016/0013-4686(94)00326-V, URL http://www.sciencedirect.com/science/article/pii/001346869400326V

  3. Boretius T, Jurzinsky T, Koehler C, Kerzenmacher S, Hillebrecht H, Stieglitz T (2011) High-porous platinum electrodes for functional electrical stimulation. In: Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE, pp 5404–5407, DOI 10.1109/IEMBS.2011.6091336

  4. Brummer SB, Robblee LS, Hambrecht FT (1983) Criteria for selecting electrodes for electrical stimulation: Theoretical and practical considerations. Annals of the New York Academy of Sciences 405(1):159–171, DOI 10.1111/j.1749-6632.1983.tb31628.x, URL http://dx.doi.org/10.1111/j.1749-6632.1983.tb31628.x

  5. Cogan SF (2008) Neural stimulation and recording electrodes. Tech. rep., EIC Laboratories

    Google Scholar 

  6. Cogan SF, Troyk PR, Ehrlich J, Plante TD (2005) In vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodes. Biomedical Engineering, IEEE Transactions on 52(9):1612–1614, DOI 10.1109/TBME.2005.851503

    Article  Google Scholar 

  7. Cui XT, Zhou DD (2007) Poly (3,4-ethylenedioxythiophene) for chronic neural stimulation. Neural Systems and Rehabilitation Engineering, IEEE Transactions on 15(4):502–508, DOI 10.1109/TNSRE.2007.909811

    Article  Google Scholar 

  8. Hassler C, Guy J, Nietzschmann M, Staiger JF, Stieglitz T (2011) Chronic intracortical implantation of saccharose-coated flexible shaft electrodes into the cortex of rats. In: Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE, pp 644–647, DOI 10.1109/IEMBS.2011.6090143

  9. Janders M, Egert U, Stelzle M, Nisch W (1996) Novel thin film titanium nitride micro-electrodes with excellent charge transfer capability for cell stimulation and sensing applications. In: Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE, vol 1, pp 245–247 vol. 1, DOI 10.1109/IEMBS.1996.656936

  10. Kaim H (2013) Charakterisierung und elektrische Ansteuerung von Stimulations-Elektroden. Diplomarbeit, University of Ulm

    Google Scholar 

  11. Lavrenko VA, Shvets VA, Makarenko GN (2001) Comparative study of the chemical resistance of titanium nitride and stainless steel in media of the oral cavity. Powder Metallurgy and Metal Ceramics 40:630–636, URL http://dx.doi.org/10.1023/A:1015296323497, 10.1023/A:1015296323497

  12. Lee IS (2004) Neural cells on iridium oxide. Key Engineering Materials 254–256:805–808

    Article  Google Scholar 

  13. Norlin A, Pan J, Leygraf C (2002) Investigation of interfacial capacitance of Pt, Ti and TiN coated electrodes by electrochemical impedance spectroscopy. Biomol Eng 19(2–6):67–71, URL http://www.biomedsearch.com/nih/Investigation-interfacial-capacitance-Pt-Ti/12202164.html

  14. Nunes Kirchner C, Hallmeier KH, Szargan R, Raschke T, Radehaus C, Wittstock G (2007) Evaluation of thin film titanium nitride electrodes for electroanalytical applications. Electroanalysis 19(10):1023–1031, DOI 10.1002/elan.200703832, URL http://dx.doi.org/10.1002/elan.200703832

  15. Perillo PM (2006) Corrosion behavior of coatings of titanium nitride and titanium-titanium nitride on steel substrates. CORROSION 62

    Google Scholar 

  16. Poppendieck W (2010) Untersuchungen zum Einsatz neuer Elektrodenmaterialien: Und deren Evaluation als Reiz- und Ableitelektrode. Südwestdeutscher Verlag, URL http://books.google.de/books?id=Z1xnRwAACAAJ

  17. Pour Aryan N, Asad M, Brendler C, Kibbel S, Heusel G, Rothermel A (2011) In vitro study of titanium nitride electrodes for neural stimulation. In: Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE, pp 2866–2869, DOI 10.1109/IEMBS.2011.6090791

  18. Pour Aryan N, Brendler C, Rieger V, Kibbel S, Harscher A, Heusel G, Rothermel A (2012a) A comparison of TiN, iridium and iridium oxide stimulating electrodes for neural stimulation. In: International Association of Science and Technology for Development,BioMed, 2012 Annual International Conference

    Google Scholar 

  19. Pour Aryan N, Brendler C, Rieger V, Schleehauf S, Heusel G, Rothermel A (2012b) In vitro study of iridium electrodes for neural stimulation. In: Engineering in Medicine and Biology Society,EMBC, 2012 Annual International Conference of the IEEE

    Google Scholar 

  20. Robblee LS, Rose TL (1990) Electrochemical Guidelines for Selection of Protocols and Electrode Materials for Neural Stimulation. In Neural Prostheses (Hrsg.: Agnew, W.F.; McCreery, D.B.), Prentice Hall, Englewood Cliffs, New Jersey, S. 25–66

    Google Scholar 

  21. Rose TL, Robblee LS (1990) Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses (neuronal application). Biomedical Engineering, IEEE Transactions on 37(11):1118–1120, DOI 10.1109/10.61038

    Article  Google Scholar 

  22. Rothermel A, Liu L, Aryan NP, Fischer M, Wünschmann J, Kibbel S, Harscher A (2009) A CMOS chip with active pixel array and specific test features for subretinal implantation. IEEE Journal of Solid-State Circuits 44(1):290–299

    Article  Google Scholar 

  23. Rubinstein JT, Spelman FA, Soma M, Suesserman MF (1987) Current density profiles of surface mounted and recessed electrodes for neural prostheses. Biomedical Engineering, IEEE Transactions on BME-34(11):864–875, DOI 10.1109/TBME.1987.326007

    Article  Google Scholar 

  24. Schaldach M, Hubmann M, Weikl A, Hardt R (1990) Sputter-deposited TiN electrode coatings for superior sensing and pacing performance. Pacing and Clinical Electrophysiology 13(12):1891–1895, DOI 10.1111/j.1540-8159.1990.tb06911.x, URL http://dx.doi.org/10.1111/j.1540-8159.1990.tb06911.x

  25. Shanmugasundaram B, Gluckman BJ (2011) Micro-reaction chamber electrodes for neural stimulation and recording. In: Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE, pp 656–659, DOI 10.1109/IEMBS.2011.6090146

  26. Stieglitz T (2004) Materials for stimulation and recording. Tech. rep., Neural Prosthetics Group, Fraunhofer Institute for Biomedical Engineering

    Google Scholar 

  27. Terasawa Y, Tashiro H, Uehara A, Saitoh T, Ozawa M, Tokuda T, Ohta J (2006) The development of a multichannel electrode array for retinal prostheses. Journal of Artificial Organs 9:263–266, URL http://dx.doi.org/10.1007/s10047-006-0352-1, 10.1007/s10047-006-0352-1

  28. Troyk PR, Detlefsen DE, Cogan SF, Ehrlich J, Bak M, McCreery DB, Bullara L, Schmidt E (2004) “Safe” charge-injection waveforms for iridium oxide (AIROF) microelectrodes. In: Engineering in Medicine and Biology Society, 2004. IEMBS ’04. 26th Annual International Conference of the IEEE, vol 2, pp 4141–4144, DOI 10.1109/IEMBS.2004.1404155

  29. Vanhoestenberghe A, Donaldson N, Lovell N, Suaning G (2008) Hermetic encapsulation of an implantable vision prosthesis - combining implant fabrication philosophies. In: IFESS 2008 - from movement to mind, URL http://discovery.ucl.ac.uk/1318417/

  30. Venkatraman S, Hendricks J, King Z, Sereno A, Richardson-Burns S, Martin D, Carmena J (2011) In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording. Neural Systems and Rehabilitation Engineering, IEEE Transactions on 19(3):307–316, DOI 10.1109/TNSRE.2011.2109399

    Article  Google Scholar 

  31. Weiland JD, Anderson DJ (2000) Chronic neural stimulation with thin-film, iridium oxide electrodes. Biomedical Engineering, IEEE Transactions on 47(7):911–918, DOI 10.1109/10.846685

    Article  Google Scholar 

  32. Weiland JD, Anderson DJ, Humayun MS (2002) In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. Biomedical Engineering, IEEE Transactions on 49(12):1574–1579, DOI 10.1109/TBME.2002.805487

    Article  Google Scholar 

  33. Wilks SJ, Woolley AJ, Ouyang L, Martin DC, Otto KJ (2011) In vivo polymerization of poly (3,4-ethylenedioxythiophene) (PEDOT) in rodent cerebral cortex. In: Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE, pp 5412–5415, DOI 10.1109/IEMBS.2011.6091338

  34. Winkin N, Mokwa W (2012) Flexible multi-electrode array with integrated bendable CMOS-Chip for implantable systems. In: Engineering in Medicine and Biology Society,EMBC, 2012 Annual International Conference of the IEEE

    Google Scholar 

  35. Zhou DM, Greenberg RJ (2003) Electrochemical characterization of titanium nitride microelectrode arrays for charge-injection applications. In: Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE, vol 2, pp 1964–1967 Vol. 2, DOI 10.1109/IEMBS.2003.1279831

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Aryan, N.P., Kaim, H., Rothermel, A. (2015). Electrode Materials: State-of-the-Art and Experiments. In: Stimulation and Recording Electrodes for Neural Prostheses. SpringerBriefs in Electrical and Computer Engineering, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-319-10052-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10052-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10051-7

  • Online ISBN: 978-3-319-10052-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics