Skip to main content

A Perspective on Chemoprevention by Resveratrol in Head and Neck Squamous Cell Carcinoma

  • Conference paper
  • First Online:
Book cover Biological Basis of Alcohol-Induced Cancer

Abstract

Head and neck squamous cell carcinoma (HNSCC) accounts for around 6 % of all cancers in the USA. Few of the greatest obstacles in HNSCC include development of secondary primary tumor, resistance and toxicity associated with the conventional treatments, together decreasing the overall 5-year survival rate in HNSCC patients to ≤50 %. Radiation and chemotherapy are the conventional treatment options available for HNSCC patients at both early and late stage of this cancer type malignancy. Unfortunately, patients response poorly to these therapies leading to relapsed cases, which further, emphasizes the need of additional strategies for the prevention/intervention of both primary and the secondary primary tumors post-HNSCC therapy. In recent years, growing interest has focused on the use of natural products or their analogs to reduce the incidence and mortality of cancer, leading to encouraging results. Resveratrol, a component from grape skin, is one of the well-studied agents with a potential role in cancer chemoprevention and other health benefits. As an anticancer agent, resveratrol suppresses metabolic activation of pro-carcinogens to carcinogens by modulating the metabolic enzymes responsible for their activation, and induces phase II enzymes, thus, further detoxifying the effect of pro-carcinogens. Resveratrol also inhibits cell growth and induces cell death in cancer cells by targeting cell survival and cell death regulatory pathways. Growing evidence also suggest that resveratrol directly binds to DNA and RNA, activates antioxidant enzymes, prevents inflammation, and stimulates DNA damage checkpoint kinases affecting genomic integrity more specifically in malignant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4NQO:

4-Nitroquinoline 1-oxide

ADH:

Alcohol dehydrogenase

ALDH:

Aldehyde dehydrogenase

AP-1:

Activator protein 1

ARE:

Antioxidant response element

ATM:

Ataxia telangiectasia mutated

ATR:

Ataxia telangiectasia-Rad3-related

B[A]P:

Benzo[a]pyrene

BER:

Base excision repair

Brca1:

Breast cancer gene 1

Cdc25C:

Cell division cycle 25C

CDKs:

Cyclin dependent kinases

Chk1/2:

Checkpoint kinase 1/2

COX2:

Cyclooxygenase 2

CYP450:

Cytochrome P450s

DMBA:

7,12-Dimethylbenz[α]anthracene

DSBs:

Double strand break

EGFR:

Epidermal growth factor receptor

Egr 1:

Early growth response 1

EMT:

Epithelial mesenchymal transition

FA:

Fanconi anemia

GSH:

Glutathione

HNSCC:

Head and neck squamous cell carcinoma

HPV:

Human papilloma virus

HRR:

Homologous recombination repair

IGFR:

Insulin-like growth factor receptor

iNOS:

Inducible nitric oxide synthetase

JNK:

c-Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinases

MCM:

Minichromosome maintenance

MMPs:

Metalloproteinases

MMR:

Mismatch repair

mTOR:

Mammalian target of rapamycin

NER:

Nucleotide excision repair

NF-kB:

Nuclear factor kappa B

NHEJ:

Non-homologous end joining

NNK:

4-Methylnitrosamine-1-(3-pyridyl)-1-butanone

P53:

Protein 53

PARP:

Poly (ADP-ribose) polymerases

PCNA:

Proliferating cell nuclear antigen

RA:

Retinoic acid

Rb:

Retinoblastoma protein

Res:

Resveratrol

ROS/RNS:

Reactive oxygen species/reactive nitrogen species

SPT:

Secondary primary tumor

SSBs:

Single strand break

STAT3:

Signal transducer and activator of transcription 3

References

  1. Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71(10):1397–1421

    Article  CAS  PubMed  Google Scholar 

  2. Balbo S, Meng L et al (2012) Kinetics of DNA adduct formation in the oral cavity after drinking alcohol. Cancer Epidemiol Biomarkers Prev 21(4):601–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Basso E, Fiore M et al (2013) Effects of resveratrol on topoisomerase II-alpha activity: induction of micronuclei and inhibition of chromosome segregation in CHO-K1 cells. Mutagenesis 28(3):243–248

    Article  CAS  PubMed  Google Scholar 

  4. Bo S, Ciccone G et al (2013) Anti-inflammatory and antioxidant effects of resveratrol in healthy smokers a randomized, double-blind, placebo-controlled, cross-over trial. Curr Med Chem 20(10):1323–1331

    Article  CAS  PubMed  Google Scholar 

  5. Brown GC, Borutaite V (2011) There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion 12(1):1–4

    Article  PubMed  Google Scholar 

  6. Buonocore D, Lazzeretti A et al (2012) Resveratrol-procyanidin blend: nutraceutical and antiaging efficacy evaluated in a placebocontrolled, double-blind study. Clin Cosmet Investig Dermatol 5:159–165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Choi S, Myers JN (2008) Molecular pathogenesis of oral squamous cell carcinoma: implications for therapy. J Dent Res 87(1):14–32

    Article  CAS  PubMed  Google Scholar 

  8. Connell PP, Jayathilaka K et al (2006) Pilot study examining tumor expression of RAD51 and clinical outcomes in human head cancers. Int J Oncol 28(5):1113–1119

    CAS  PubMed  Google Scholar 

  9. Cui R, Kamatani Y et al (2009) Functional variants in ADH1B and ALDH2 coupled with alcohol and smoking synergistically enhance esophageal cancer risk. Gastroenterology 137(5):1768–1775

    Article  CAS  PubMed  Google Scholar 

  10. Day GL, Blot WJ et al (1994) Second cancers following oral and pharyngeal cancers: role of tobacco and alcohol. J Natl Cancer Inst 86(2):131–137

    Article  CAS  PubMed  Google Scholar 

  11. De Groote D, Van Belleghem K et al (2012) Effect of the intake of resveratrol, resveratrol phosphate, and catechin-rich grape seed extract on markers of oxidative stress and gene expression in adult obese subjects. Ann Nutr Metab 61(1):15–24

    Article  PubMed  Google Scholar 

  12. Derry MM, Raina K et al (2013) Identifying molecular targets of lifestyle modifications in colon cancer prevention. Front Oncol 3:119

    Article  PubMed Central  PubMed  Google Scholar 

  13. Dudek AZ, Lesniewski-Kmak K et al (2009) Phase I study of bortezomib and cetuximab in patients with solid tumours expressing epidermal growth factor receptor. Br J Cancer 100(9):1379–1384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ferlay J, Shin HR et al (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917

    Article  CAS  PubMed  Google Scholar 

  15. Fortune JM, Osheroff N (2000) Topoisomerase II as a target for anticancer drugs: when enzymes stop being nice. Prog Nucleic Acid Res Mol Biol 64:221–253

    Article  CAS  PubMed  Google Scholar 

  16. Fouret P, Monceaux G et al (1997) Human papillomavirus in head and neck squamous cell carcinomas in nonsmokers. Arch Otolaryngol Head Neck Surg 123(5):513–516

    Article  CAS  PubMed  Google Scholar 

  17. Freedman ND, Schatzkin A et al (2007) Alcohol and head and neck cancer risk in a prospective study. Br J Cancer 96(9):1469–1474

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Freudlsperger C, Burnett JR et al (2010) EGFR-PI3K-AKT-mTOR signaling in head and neck squamous cell carcinomas: attractive targets for molecular-oriented therapy. Expert Opin Ther Targets 15(1):63–74

    Article  PubMed Central  PubMed  Google Scholar 

  19. Furgason JM, Bahassi M et al (2012) Targeting DNA repair mechanisms in cancer. Pharmacol Ther 137(3):298–308

    Article  PubMed  Google Scholar 

  20. Garaycoechea JI, Crossan GP et al (2012) Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 489(7417):571–575

    Article  CAS  PubMed  Google Scholar 

  21. Gatz SA, Wiesmuller L (2008) Take a break—resveratrol in action on DNA. Carcinogenesis 29(2):321–332

    Article  CAS  PubMed  Google Scholar 

  22. Gillison ML, Koch WM et al (2000) Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 92(9):709–720

    Article  CAS  PubMed  Google Scholar 

  23. Hira A, Yabe H et al (2013) Variant ALDH2 is associated with accelerated progression of bone marrow failure in Japanese Fanconi anemia patients. Blood 122(18):3206–3209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411(6835):366–374

    Article  CAS  PubMed  Google Scholar 

  25. Hong WK, Endicott J et al (1986) 13-cis-retinoic acid in the treatment of oral leukoplakia. N Engl J Med 315(24):1501–1505

    Article  CAS  PubMed  Google Scholar 

  26. Howard JD, Lu B et al (2012) Therapeutic targets in head and neck squamous cell carcinoma: identification, evaluation, and clinical translation. Oral Oncol 48(1):10–17

    Article  PubMed  Google Scholar 

  27. Howells LM, Berry DP et al (2011) Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases–safety, pharmacokinetics, and pharmacodynamics. Cancer Prev Res (Phila) 4(9):1419–1425

    Article  CAS  Google Scholar 

  28. Irish JC, Bernstein A (1993) Oncogenes in head and neck cancer. Laryngoscope 103(1 Pt 1):42–52

    CAS  PubMed  Google Scholar 

  29. Ishiji T (2000) Molecular mechanism of carcinogenesis by human papillomavirus-16. J Dermatol 27(2):73–86

    CAS  PubMed  Google Scholar 

  30. Jelski W, Kutylowska E et al (2011) Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) as candidates for tumor markers in patients with pancreatic cancer. J Gastrointestin Liver Dis 20(3):255–259

    PubMed  Google Scholar 

  31. Kundu SK, Nestor M (2012) Targeted therapy in head and neck cancer. Tumour Biol 33(3):707–721

    Article  CAS  PubMed  Google Scholar 

  32. Lachenmeier DW, Monakhova YB (2011) Short-term salivary acetaldehyde increase due to direct exposure to alcoholic beverages as an additional cancer risk factor beyond ethanol metabolism. J Exp Clin Cancer Res 30:3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Lanzilli G, Fuggetta MP et al (2006) Resveratrol down-regulates the growth and telomerase activity of breast cancer cells in vitro. Int J Oncol 28(3):641–648

    CAS  PubMed  Google Scholar 

  34. Leemans CR, Braakhuis BJ et al (2011) The molecular biology of head and neck cancer. Nat Rev Cancer 11(1):9–22

    Article  CAS  PubMed  Google Scholar 

  35. Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52(3–5):159–164

    Article  CAS  PubMed  Google Scholar 

  36. Leon-Galicia I, Diaz-Chavez J et al (2013) Resveratrol induces downregulation of DNA repair genes in MCF-7 human breast cancer cells. Eur J Cancer Prev 22(1):11–20

    Article  CAS  PubMed  Google Scholar 

  37. Maacke H, Opitz S et al (2000) Over-expression of wild-type Rad51 correlates with histological grading of invasive ductal breast cancer. Int J Cancer 88(6):907–913

    Article  CAS  PubMed  Google Scholar 

  38. Maiorano D, Lutzmann M et al (2006) MCM proteins and DNA replication. Curr Opin Cell Biol 18(2):130–136

    Article  CAS  PubMed  Google Scholar 

  39. Markus MA, Marques FZ et al (2011) Resveratrol, by modulating RNA processing factor levels, can influence the alternative splicing of pre-mRNAs. PLoS One 6(12):e28926

    Article  PubMed Central  PubMed  Google Scholar 

  40. Martins LA, Coelho BP et al (2014) Resveratrol induces pro-oxidant effects and time-dependent resistance to cytotoxicity in activated hepatic stellate cells. Cell Biochem Biophys 68(2):247–257

    Article  CAS  PubMed  Google Scholar 

  41. Mitra A, Jameson C et al (2009) Overexpression of RAD51 occurs in aggressive prostatic cancer. Histopathology 55(6):696–704

    Article  PubMed Central  PubMed  Google Scholar 

  42. Nassiri-Asl M, Hosseinzadeh H (2009) Review of the pharmacological effects of Vitis vinifera (Grape) and its bioactive compounds. Phytother Res 23(9):1197–1204

    Article  CAS  PubMed  Google Scholar 

  43. Nguyen SA, Walker D et al (2012) mTOR inhibitors and its role in the treatment of head and neck squamous cell carcinoma. Curr Treat Options Oncol 13(1):71–81

    Article  PubMed  Google Scholar 

  44. O’Neil N, Rose A (2006) DNA repair. WormBook, pp 1–12

    Google Scholar 

  45. Ohba S, Fujii H et al (2009) Overexpression of GLUT-1 in the invasion front is associated with depth of oral squamous cell carcinoma and prognosis. J Oral Pathol Med 39(1):74–78

    Article  PubMed  Google Scholar 

  46. Paglin S, Hollister T et al (2001) A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 61(2):439–444

    CAS  PubMed  Google Scholar 

  47. Pavlov YI, Shcherbakova PV et al (2006) Roles of DNA polymerases in replication, repair, and recombination in eukaryotes. Int Rev Cytol 255:41–132

    Article  CAS  PubMed  Google Scholar 

  48. Petti S (2009) Lifestyle risk factors for oral cancer. Oral Oncol 45(4–5):340–350

    Article  PubMed  Google Scholar 

  49. Poeta ML, Manola J et al (2007) TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med 357(25):2552–2561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Radhakrishnan S, Reddivari L et al (2011) Resveratrol potentiates grape seed extract induced human colon cancer cell apoptosis. Front Biosci (Elite Ed) 3:1509–1523

    Google Scholar 

  51. Radojicic J, Zaravinos A et al (2012) HPV, KRAS mutations, alcohol consumption and tobacco smoking effects on esophageal squamous-cell carcinoma carcinogenesis. Int J Biol Markers 27(1):1–12

    Article  CAS  PubMed  Google Scholar 

  52. Rakoff-Nahoum S (2006) Why cancer and inflammation? Yale J Biol Med 79(3–4):123–130

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Roy S, Kaur M et al (2007) p21 and p27 induction by silibinin is essential for its cell cycle arrest effect in prostate carcinoma cells. Mol Cancer Ther 6(10):2696–2707

    Article  CAS  PubMed  Google Scholar 

  54. Rusin P, Olszewski J et al (2009) Comparative study of DNA damage and repair in head and neck cancer after radiation treatment. Cell Biol Int 33(3):357–363

    Article  CAS  PubMed  Google Scholar 

  55. Sanchez-Alvarez R, Martinez-Outschoorn UE et al (2013) Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention. Cell Cycle 12(2):289–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Sankaranarayanan R, Masuyer E et al (1998) Head and neck cancer: a global perspective on epidemiology and prognosis. Anticancer Res 18(6B):4779–4786

    CAS  PubMed  Google Scholar 

  57. Seitz HK, Stickel F (2007) Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer 7(8):599–612

    Article  CAS  PubMed  Google Scholar 

  58. Sharafinski ME, Ferris RL et al (2010) Epidermal growth factor receptor targeted therapy of squamous cell carcinoma of the head and neck. Head Neck 32(10):1412–1421

    Article  PubMed Central  PubMed  Google Scholar 

  59. Siegel R, Naishadham D et al (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30

    Article  PubMed  Google Scholar 

  60. Signorelli P, Ghidoni R (2005) Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem 16(8):449–466

    Article  CAS  PubMed  Google Scholar 

  61. Smith J, Tho LM et al (2010) The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 108:73–112

    Article  CAS  PubMed  Google Scholar 

  62. Tome-Carneiro J, Larrosa M et al (2013) Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des 19(34):6064–6093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Trachootham D, Alexandre J et al (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591

    Article  CAS  PubMed  Google Scholar 

  64. Tsao AS, Garden AS et al (2006) Phase I/II study of docetaxel, cisplatin, and concomitant boost radiation for locally advanced squamous cell cancer of the head and neck. J Clin Oncol 24(25):4163–4169

    Article  CAS  PubMed  Google Scholar 

  65. Turati F, Garavello W et al (2010) A meta-analysis of alcohol drinking and oral and pharyngeal cancers. Part 2: results by subsites. Oral Oncol 46(10):720–726

    Article  PubMed  Google Scholar 

  66. Tyagi A, Gu M et al (2011) Resveratrol selectively induces DNA damage, independent of Smad4 expression, in its efficacy against human head and neck squamous cell carcinoma. Clin Cancer Res 17(16):5402–5411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Tyagi A, Singh RP et al (2005) Resveratrol causes Cdc2-tyr15 phosphorylation via ATM/ATR-Chk1/2-Cdc25C pathway as a central mechanism for S phase arrest in human ovarian carcinoma Ovcar-3 cells. Carcinogenesis 26(11):1978–1987

    Article  CAS  PubMed  Google Scholar 

  68. Wang M, Chu H et al (2013) Molecular epidemiology of DNA repair gene polymorphisms and head and neck cancer. J Biomed Res 27(3):179–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Weng CJ, Yen GC (2012) Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat Rev 38(1):76–87

    Article  CAS  PubMed  Google Scholar 

  70. Woutersen RA, Appelman LM et al (1986) Inhalation toxicity of acetaldehyde in rats. III. Carcinogenicity study. Toxicology 41(2):213–231

    Article  CAS  PubMed  Google Scholar 

  71. Yokoyama A, Muramatsu T et al (1998) Alcohol-related cancers and aldehyde dehydrogenase-2 in Japanese alcoholics. Carcinogenesis 19(8):1383–1387

    Article  CAS  PubMed  Google Scholar 

  72. Chow, H. H., L. L. Garland, et al. (2010). “Resveratrol modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer study.” Cancer Prev Res (Phila) 3(9): 1168–1175

    Article  CAS  Google Scholar 

Download references

Grant Support:

Supported by grants to R. Sclafani from the Fanconi Anemia Research Foundation and the University of Colorado Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Sclafani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Shrotriya, S., Agarwal, R., Sclafani, R.A. (2015). A Perspective on Chemoprevention by Resveratrol in Head and Neck Squamous Cell Carcinoma. In: Vasiliou, V., Zakhari, S., Seitz, H., Hoek, J. (eds) Biological Basis of Alcohol-Induced Cancer. Advances in Experimental Medicine and Biology, vol 815. Springer, Cham. https://doi.org/10.1007/978-3-319-09614-8_19

Download citation

Publish with us

Policies and ethics