Skip to main content

EPR and IR Spectroscopy of Free Radicals and Radical Ions Produced by Radiation in Solid Systems

  • Chapter
  • First Online:
Book cover Applications of EPR in Radiation Research

Abstract

EPR spectroscopy was extensively used for characterization of highly reactive paramagnetic species produced by ionizing radiation in low-temperature solids for 60 years. The present chapter outlines experimental approaches in this field and presents a review of recent development using a combination of EPR and IR spectroscopy. This approach made it possible to get a new insight in the radiation-induced chemistry of molecules in solids and to provide more detailed information on the structure and dynamics of radiation-induced radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hutchison CA (1949) Paramagnetic resonance absorption in crystals colored by irradiation. Phys Rev 75:1769

    Article  CAS  Google Scholar 

  2. Schneider EE, Day MJ, Stein G (1951) Effects of X-rays upon plastics: paramagnetic resonance. Nature 168:645–664

    Article  CAS  Google Scholar 

  3. Morton JR (1964) Electron spin resonance spectra of oriented radicals. Chem Rev 64:453–471

    Article  CAS  Google Scholar 

  4. Pshezhetskii SYa, Kotov AG, Milinchuk VK, Roginskii VAT (1974) EPR of free radicals in radiation chemistry. Wiley, NY

    Google Scholar 

  5. Shida T, Kato T (1979) ESR and optical studies on the cation-radical of pyridine in a gamma-irradiated rigid matrix at low-temperatures. Chem Phys Lett 68:106–111

    Article  CAS  Google Scholar 

  6. Symons MCR (1984) Radical cations in condensed phases. Chem Soc Rev 13:393–439

    Article  CAS  Google Scholar 

  7. Shiotani M (1987) ESR studies of radical cations in solid matrices. Magn Reson Rev 12:333–381

    CAS  Google Scholar 

  8. Lund A, Shiotani M (eds) (1991) Radical ionic systems. Properties in condensed phases. Kluwer, Dordrecht

    Book  Google Scholar 

  9. Knight LB (1986) ESR investigations of molecular cation radicals in neon matrices at 4 K: generation, trapping, and ion-neutral reactions. Acc Chem Res 19:313–321

    Article  CAS  Google Scholar 

  10. Knight LB, Gregory BW, Cobranchi ST, Williams F, Qin X-Z (1988) High-resolution electron-spin-resonance spectroscopy and structure of the acetaldehyde radical cation (CH3CHO + ) in neon matrices at 4 K-comparison with results in freon matrices. J Am Chem Soc 110:327–342

    Article  CAS  Google Scholar 

  11. Knight LB, Kerr K, Villanueva M, McKinley AJ, Feller D (1992) Theoretical and neon ­matrix electron-spin-resonance studies of the methanol cation-CH3OH + , CH3OD + , CH2DOH + , and (CH3OH + )C13. J Chem Phys 97:5363–5376

    Article  CAS  Google Scholar 

  12. Feldman VI (1997) Structure and properties of hydrocarbon radical cations in low-temperature matrices as studied by a combination of EPR and IR spectroscopy. Acta Chem Scand 51:181–192

    Article  CAS  Google Scholar 

  13. Feldman VI (1999) Radiation-induced transformations of isolated organic molecules in solid rare gas matrices. Radiat Phys Chem 55:565–571

    Article  CAS  Google Scholar 

  14. Feldman VI, Sukhov FF, Orlov AYu (1999) An ESR study of benzene radical cation in an argon matrix: evidence for favourable stabilization of 2B1 g rather than 2B2 g state. Chem Phys Lett 300:713–718

    Article  CAS  Google Scholar 

  15. Feldman VI, Sukhov FF, Orlov AYu, Kadam R, Itagaki Y, Lund A (2000) Effect of matrix and substituent on the electronic structure of trapped benzene radical cations. Phys Chem Chem Phys 2:29–35

    Article  CAS  Google Scholar 

  16. Feldman VI, Sukhov FF, Orlov AYu, Shmakova NA (2000) Effect of matrix electronic characteristics on trapping and degradation of organic radical cations in solid rare gases: a case study of methylal radical cation. J Phys Chem A 104:3792–3799

    Article  CAS  Google Scholar 

  17. Feldman V, Sukhov F, Orlov A, Tyulpina I (2003) Stabilization and reactions of aliphatic ­radical cations produced by fast electron irradiation in solid argon matrices. Phys Chem Chem Phys 5:1769–1774

    Article  CAS  Google Scholar 

  18. Feldman VI, Sukhov FF, Orlov AYu, Tyulpina IV, Ivanchenko VK (2006) Stabilization and isomerization of radical cations generated by fast electron irradiation of unsaturated organic molecules in a solid argon matrix. Radiat Phys Chem 75:106–114

    Article  CAS  Google Scholar 

  19. Iwasaki M, Toriyama K, Fukaya M, Muto H, Nunome K (1985) 4 K radiolysis of linear alkanes as studied by electron-spin resonance spectroscopy-selective formation of terminal alkyl radicals in the primary process. J Phys Chem 89:5278–5284

    Article  CAS  Google Scholar 

  20. Feldman VI, Sukhov FF, Slovokhotova NA (1994) Selectivity of radiation-induced chemical processes in low-molecular-mass and high-molecular-mass hydrocarbons. Vysokomolek soedin B 36:519–543

    Google Scholar 

  21. Feldman VI (1996) Selective localization of primary radiation-chemical events in solid aliphatic hydrocarbons and related polymers as evidenced by ESR. Appl Radiat Isot 47:1497–1501

    Article  CAS  Google Scholar 

  22. Feldman VI (2011) Selective and long-range effects in the radiation chemistry of molecular solids and polymers. In: Stass DV, Feldman VI (eds) Selectivity, control, and fine tuning in high-energy chemistry. Research Signpost, Trivandrum

    Google Scholar 

  23. Feldman VI (2013) Organic radical cations and neutral radicals produced by radiation in low-temperature matrices. In: Lund A, Shiotani M (eds) EPR of free radicals in solids II. Trends in applications and methods (2nd edn). Springer, Dordrecht

    Google Scholar 

  24. Shida T (1988) Electronic absorption spectra of radical ions. Elsevier, Amsterdam

    Google Scholar 

  25. Mel’nikov MYa, Smirnov VA (1996) Handbook of photochemistry of organic radicals. ­Begell House Inc Publishers, NY

    Google Scholar 

  26. Feldman VI, Mel’nikov MYa (2000) Matrix effects in the reactions of organic radical cations in ground and excited states in solid phase. High Energy Chem 34:236–245

    Article  CAS  Google Scholar 

  27. Gillbro T, Lund A (1975) High-yield of radical pairs in deuterated normal-alkane single-crystals gamma-irradiated at 4.2 K. Chem Phys Lett 34:375–377

    Article  CAS  Google Scholar 

  28. Gillbro T, Lund A (1976) Deposition of radiation energy in solids as visualized by distribution, structure and properties of alkyl radicals in gamma-irradiated normal-alkane ­single-crystals. Int J Radiat Phys Chem 8:625–641

    Article  CAS  Google Scholar 

  29. Iwasaki M, Toriyama K, Muto H, Nunome K (1976) Pairwise trapping of radicals in single-crystals of normal-decane irradiated at 1.5 and 4.2 degrees K. J Chem Phys 65:596–606

    Article  CAS  Google Scholar 

  30. Toriyama K, Muto H, Nunome K, Fukaya M, Iwasaki M (1981) Radiation damages of ­organic materials at 4 К-an electron spin resonance study of polyethylene and related hydrocarbons. Radiat Phys Chem 18:1041–1052

    Article  CAS  Google Scholar 

  31. Toriyama K, Iwasaki M (1979) Electron spin resonance studies on radiolysis of crystalline methanol at 4.2 K. J Am Chem Soc 101:2516–2523

    Article  CAS  Google Scholar 

  32. Feldman VI, Borzov SM, Sukhov FF, Slovokhotova NA (1987) Radical processes in polyethylene, irradiated at 10-100 K. Khimicheskaya fizika 6:477–483

    CAS  Google Scholar 

  33. Whittle E, Dows DA, Pimentel GC (1954) Matrix isolation method for the experimental study of unstable species. J Chem Phys 22:1943

    CAS  Google Scholar 

  34. Bouldin WV, Gordy W (1964) Energy migration + isotopic effects in irradiated solids at low temperature. Phys Rev 135:A806–A814

    Article  Google Scholar 

  35. Bhattachrya D, Willard JE (1981) Radiolytic production of trapped hydrogen atoms from organic compounds in Xe, Kr, and Ar at 10 K. J Phys Chem 85:154–159

    Article  Google Scholar 

  36. Muto H, Toriyama K, Nunome K, Iwasaki M (1982) Radiolysis of alkanes and olefins in xenon matrices at 4.2 K as studied by electron spin resonance-formation and trapping of hydrogen atoms and their subsequent reactions at cryogenic temperatures. Radiat Phys Chem 19:201–208

    Article  CAS  Google Scholar 

  37. Gotoh K, Miyazaki T, Fueki K, Lee K-P (1987) Electron spin resonance study of radiolysis of solid rare-gas alkane mixtures at 4.2 K-ionic fragmentation and initial energy of hot H-atoms. Radiat Phys Chem 30:89–89

    CAS  Google Scholar 

  38. Qin X-Z, Trifunac AD (1990) Radiolytic generation of radical cations in xenon matrices-tetramethylcyclopropane radical cation and its transformations. J Phys Chem 94:3188–3192

    Article  CAS  Google Scholar 

  39. Knight LB (1991) Generation and study of inorganic cations on rare gas matrices. In: Lund A, Shiotani M (eds) Radical ionic. Kluwer, Dordrecht

    Google Scholar 

  40. Knight LB, King GM, Petty JT, Matsushita M, Momose T, Shida T (1995) Electron-spin-resonance studies of the methane radical cations ((CH4  + )C12,13, (CDH3 + )C12,13, (CD2H2 + )C12, (CD3H + )C12, (CD4  + )C12) in solid neon matrices between 2.5 and 11 K-analysis of tunnelling. J Chem Phys 103:3377–3386

    Article  CAS  Google Scholar 

  41. Yamada S, Komaguchi K, Shiotani M, Benetis NP, Sornes AR (1999) High-resolution EPR and quantum effects on CH3, CH2D, CHD2, and CD3 radicals under argon matrix isolation conditions. J Phys Chem A 103:4823–4829

    Article  CAS  Google Scholar 

  42. Feldman VI, Baranova IA, Kobzarenko AV, Tyulpina IV (2011) Fragmentation of the primary radical cations of methoxyacetone and diacetonyl in a solid argon matrix. High Energy Chem 45:351–352

    Article  CAS  Google Scholar 

  43. Kobzarenko AV, Sukhov FF, Orlov AY, Kovalev GV, Baranova IA, Feldman VI (2012) ­Effect of molecular structure on fragmentation of organic molecules in solid rare gas matrices. ­Radiat Phys Chem 81:1434–1439

    Article  CAS  Google Scholar 

  44. Bally T (1991) Electronic structure, spectroscopy, and photochemistry of organic radical ­cations. In: Lund A, Shiotani M (eds) Radical ionic systems. Properties in condensed phases. Kluwer, Dordrecht

    Google Scholar 

  45. Feldman VI, Sukhov FF, Slovokhotova NA, Bazov VP (1996) Radiation-induced degradation of alkane molecules in solid rare gas matrices. Radiat Phys Chem 48:261–269

    Article  CAS  Google Scholar 

  46. Feldman VI, Sukhov FF, Orlov AYu (1997) Further evidence for formation of xenon ­dihydride from neutral hydrogen atoms: a comparison of ESR and IR spectroscopic results. Chem Phys Lett 280:507–512

    Article  CAS  Google Scholar 

  47. Feldman VI, Sukhov FF, Orlov AYu, Tyulpina IV (2008) High-resolution EPR spectroscopy of small radicals in a solid 136Xe matrix. Mendeleev Commun 18:121–122

    Article  CAS  Google Scholar 

  48. Feldman VI, Orlov AYu, Sukhov FF (2008) Hydrogen atoms in solid xenon: trapping site structure, distribution, and stability as revealed by EPR studies in monoisotopic and isotopically enriched xenon matrices. J Chem Phys 128:214511

    Article  Google Scholar 

  49. Shida T, Hamill WH (1966) Molecular ions in radiation chemistry I. Formation of aromatic-amine cations in CCl4 by resonance charge transfer at 77 K. J Chem Phys 44:2369–2374

    Article  CAS  Google Scholar 

  50. Grimpson A, Simpson GA (1968) Spectrophotometric identification of gamma-radiolytic ­intermediates in a new halogenic glassy matrix. J Phys Chem 72:1776–1779

    Article  Google Scholar 

  51. Henly E, Johnson E (1969) The chemistry and physics of high energy reactions. University Press, Cambridge

    Google Scholar 

  52. Hubbell JH, Settler SM (1996) Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. http://www.nist.gov/pml/data/xraycoef. Accessed 28 Feb 2014

  53. Pacansky J, Maier M (1990) Irradiation of small molecules isolated in rare- gas matrices by high-energy electron-beams. J Molec Struct 222:33–75

    Article  CAS  Google Scholar 

  54. Ennis CP, Kaiser RI (2010) Mechanistical studies on the electron-induced degradation of polymers: polyethylene, polytetrafluoroethylene, and polystyrene. Phys Chem Chem Phys 12:14884–14901

    Article  CAS  Google Scholar 

  55. Sukhov FF (1988) Low-temperature radiation-chemical processes in polymers and their low-molecular-weight analogues (in Russian). Dissertation, Karpov Institute of Physical Chemistry

    Google Scholar 

  56. Foner SN, Cochran EL, Bowers VA, Jen CK (1960) Multiple trapping sites for hydrogen atoms in rare gas matrices. J Chem Phys 32:963–971

    Article  CAS  Google Scholar 

  57. Komaguchi K, Nomura K, Shiotani M (2007) High-resolution ESR study of the H center dot center dot center dot CH3, H center dot center dot center dot CHD2, D center dot center dot center dot CH2D, and D center dot center dot center dot CD3 radical pairs in solid argon. J Phys Chem A 111:726–733

    Article  CAS  Google Scholar 

  58. Feldman VI, Kobzarenko AV, Orlov AY, Sukhov FF (2012) The radiation-induced chemistry in solid xenon matrices. Low Temp Phys 38:766–773

    Article  CAS  Google Scholar 

  59. Eberlein J, Creuzburg M (1997) Mobility of atomic hydrogen in solid krypton and xenon. J Chem Phys 106:2188–2194

    Article  CAS  Google Scholar 

  60. Kinugawa K, Miyazaki T, Hase H (1978) Trapping and reaction of hydrogen atoms produced by ultraviolet photolysis of xenon-isobutane mixtures at 4 and 77 K. J Phys Chem 82(15):1697–1700

    Article  CAS  Google Scholar 

  61. Apkarian VA, Schwentner N (1999) Molecular photodynamics in rare gas solids. Chem Rev 99:1481–1514

    Article  CAS  Google Scholar 

  62. Pettresson M, Kriachnchev L, Roozeman RJ, Räsänen M (2000) Photolysis of HI in solid Xe: production and distribution of hydrogen atoms. Chem Phys Lett 323:506–513

    Article  Google Scholar 

  63. Muto H, Nunome K, Iwasaki M (1980) Reactions of thermal H atoms at cryogenic temperature below 77 K as studied by ESR. Competitive H abstraction from C2H6 and HI in rare-gas Matrices. J Phys Chem 84:3402–3408

    Article  CAS  Google Scholar 

  64. Pettersson M, Lundell J, Räsänen M (1995) Neutral rare-gas containing charge-transfer ­molecules in solid matrices. I. HXeCl, HXeBr, HXeI, and HKrCl in Kr and Xe. J Chem. Phys 102:6423–6431

    CAS  Google Scholar 

  65. Pettersson M, Lundell J, Räsänen M (1995) Neutral rare gas containing charge transfer molecules in solid matrices. II. HXeH, HXeD, and DXeD in Xe. J Chem Phys 103:205–210

    Article  CAS  Google Scholar 

  66. Feldman VI, Sukhov FF (1996) Formation and decay of transient xenon dihydride resulting from hydrocarbon radiolysis in a xenon matrix. Chem Phys Lett 255:425–430

    Article  CAS  Google Scholar 

  67. Pettersson M, Nieminen J, Khriachnchev L, Räsänen M (1997) The mechanism of formation and infrared-induced decomposition of HXeI in solid Xe. J Chem Phys 107:8423–8431

    Article  CAS  Google Scholar 

  68. Pettersson M, Lundell J, Räsänen M (1999) New rare-gas-containing neutral molecules. Eur J Inorg Chem 1999:729–737

    Article  Google Scholar 

  69. Khriachtchev L, Räsänen M, Gerber RB (2009) New chemistry at low temperatures. Acc Chem Res 42:183–191

    Article  CAS  Google Scholar 

  70. Grochala L, Khriachtchev L, Räsänen M (2011) Noble-gas chemistry. In: Khriachtchev F (ed) Physics and chemistry at low temperatures. Pan Stanford Publishing, Singapore

    Google Scholar 

  71. Khriachtchev L, Tanskanen H, Pettersson M, Räsänen M, Feldman V, Sukhov F, Orlov A, Shestakov AF (2002) Isotopic effect in thermal mobility of atomic hydrogen in solid xenon. J Chem Phys 116:5708–5716

    Article  CAS  Google Scholar 

  72. Kobzarenko AV (2013) Mechanism of the radiation-chemical synthesis and properties of some xenon and krypton hydrides (in Russian). Dissertation, Lomonosov Mocsow State University

    Google Scholar 

  73. Feldman VI, Sukhov FF, Orlov AYu, Tyulpina IV (2003) Experimental evidence for the formation of HXeCCH: the first hydrocarbon with an inserted rare-gas atom. J Am Chem Soc 125:4698–4699

    Article  CAS  Google Scholar 

  74. Feldman VI, Sukhov FF, Orlov AYu, Tyulpina IV, Logacheva ES, Tyurin DA (2005) Chemical reactions in the xenon-acetylene systems irradiated with fast electrons at 16 K: formation of xenon-containing molecules and radicals. Russ Chem Bull 54:1458–1466

    Article  CAS  Google Scholar 

  75. Ryazantsev SV, Kobzarenko AV, Feldman VI (2013) Photolabile xenon hydrides: a case study of HXeSH and HXeH. J Chem Phys 129:124315 (1–7)

    Article  Google Scholar 

  76. Khriachtchev L, Tanskanen H, Lundell J, Pettersson M, Kiljunen T, Räsänen M (2003) ­Fluorine-free organoxenon chemistry: HXeCCH, HXeCC, and HXeCCXeH. J Am Chem Soc 125:4696–4697

    Article  CAS  Google Scholar 

  77. Cochran EL, Adrian FJ, Bowers VA (1964) ESR study of ethynyl and vinyl free radicals. J Chem Phys 40:213–220

    Article  CAS  Google Scholar 

  78. Chemistry Webbook NIST. NIST Standard Reference Database Number 69 (2011). http://webbook.nist.gov/chemistry/. Accessed 28 Feb 2013

  79. Kasai PH (1972) Electron spin resonance studies of vinyl, propargyl, and butatrienyl radicals isolated in argon matrices. J Am Chem Soc 94:5950–5956

    Article  CAS  Google Scholar 

  80. Fӧldiak G (ed) (1981) Radiation chemistry of hydrocarbons. Akademiai Kiado, Budapest

    Google Scholar 

  81. Feldman VI, Sukhov FF, Logacheva EA, Orlov AYu, Tyulpina IV, Tyurin DA (2007) Reactions of H atoms produced by electron irradiation of benzene in solid xenon: IR spectrum of cylohexadienyl radical and possible involvement of HXeC6H5. Chem Phys Lett 437:207–211

    Article  CAS  Google Scholar 

  82. Pettersson MA, Khriachtchev L, Lundell J, Räsänen M (1999) Chemical compound formed from water and xenon: HXeOH. J Am Chem Soc 121:11904–11905

    Article  CAS  Google Scholar 

  83. Isoniemi E, Pettersson M, Khriachtchev L, Lundell J, Räsänen M (1999) Infrared spectroscopy of H2S and SH in rare-gas matrixes. J Phys Chem A 103:679–685

    Article  CAS  Google Scholar 

  84. Tanskanen H, Khriachtchev L, Räsänen M, Feldman VI, Sukhov FF, Orlov AY, Tyurin DA (2005) Infrared absorption and electron paramagnetic resonance studies of vinyl radical in noble-gas matrices. J Chem Phys 123:064318

    Article  Google Scholar 

  85. Bahou M, Wu Y-J, Lee Y-P (2012) A new method for investigating infrared spectra of protonated benzene (C6H7 +) and cyclohexadienyl radical (c-C6H7) using para-hydrogen. J Chem Phys 2012:154304

    Article  Google Scholar 

  86. Khriachtchev L, Pettersson M, Lundell J, Tanskanen H, Kiviniemi T, Runeberg N, Räsänen M (2003) A neutral xenon-containing radical, HXeO. J Am Chem Soc 125:1454–1455

    Article  CAS  Google Scholar 

  87. Feldman V (2014) Structure and reactions of aliphatic “Bridged” bifunctional radical ions: exploring fine tuning in radiation chemistry. Isr J Chem 2014 (in press)

    Google Scholar 

  88. Feldman VI, Sukhov FF, Orlov AYu, Shmakova NA (2001) Radiation chemistry of organic molecules in solid rare gas matrices: 2 selective deprotonation of the primary radical cations upon irradiation of oxygen-containing molecules in xenon matrices. High Energy Chem 35:319–327

    Article  CAS  Google Scholar 

  89. Karatun AA, Sukhov FF, Slovokhotova NA (1981) Stabilization of HArn  + , HKrn  + , and HXen  + in solid inert-gases on irradiation of 2-chloropropane in them by fast electrons. Khim Vys Energ 156:371–372

    Google Scholar 

  90. Kunttu H, Seetula J, Rasanen M, Apkarian A (1992) Photogeneration of ions via delocalized charge-transfer states 1 xe2h + and xe2d +  in solid xe. J Chem Phys 96:5630–5635

    Article  CAS  Google Scholar 

  91. Fridgen TD, Parnis JM (1999) A density functional theory study of the catalytic role of Ar, Kr, Xe, and N2 in the CH3OH center dot + to CH2OH2 center dot + isomerization reaction. Int J Mass Spectrom Ion Process 190-191:181–194

    Article  Google Scholar 

  92. Fourre I, Silvi B, Chaquin P, Sevin A (1999) Electron localization function comparative study of ground state, triplet state, radical anion, and cation in model carbonyl and imine compounds. J Comput Chem 20:897–910

    Article  CAS  Google Scholar 

  93. Köppe R, Kasai PH (1994) Aliphatic ketone anion radicals: a matrix isolation ESR study. J Phys Chem 98:12904–12910

    Article  Google Scholar 

  94. Saenko EV, Laikov DN, Baranova IA, Feldman VI (2011) Communication: stabilization of radical anions with weakly bound electron in condensed media: a case study of diacetonyl radical anion. J Chem Phys 135:101103 (1–4)

    Article  Google Scholar 

Download references

Acknowledgments

I am indebted to all my collaborators and students, who took part in our research of the radiation-induced radicals and radical ions in low-temperature matrices during the past two decades, in particular, Dr. F.F. Sukhov, Dr. A.V Kobzarenko, Dr. A.Yu. Orlov, Dr. D.A. Tyurin, Dr. D.N. Laikov, Dr. I.A. Baranova, I.V. Tyulpina, E.V. Saenko, S.V. Ryazantsev, and S.V. Kameneva. The studies described in this chapter were supported by The Division of Chemistry of The Russian Academy of Sciences (program no. 1) and by The Russian Foundation for Basic Research (proects no. 06-03-33104-a, 09-03-00848-a and 12-03-01009-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir I. Feldman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing

About this chapter

Cite this chapter

Feldman, V. (2014). EPR and IR Spectroscopy of Free Radicals and Radical Ions Produced by Radiation in Solid Systems. In: Lund, A., Shiotani, M. (eds) Applications of EPR in Radiation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-09216-4_5

Download citation

Publish with us

Policies and ethics