Skip to main content

Parallel-in-Space-and-Time Simulation of the Three-Dimensional, Unsteady Navier-Stokes Equations for Incompressible Flow

  • Conference paper
  • First Online:
Modeling, Simulation and Optimization of Complex Processes - HPSC 2012

Abstract

In this paper we combine the Parareal parallel-in-time method together with spatial parallelization and investigate this space-time parallel scheme by means of solving the three-dimensional incompressible Navier-Stokes equations. Parallelization of time stepping provides a new direction of parallelization and allows to employ additional cores to further speed up simulations after spatial parallelization has saturated. We report on numerical experiments performed on a Cray XE6, simulating a driven cavity flow with and without obstacles. Distributed memory parallelization is used in both space and time, featuring up to 2,048 cores in total. It is confirmed that the space-time-parallel method can provide speedup beyond the saturation of the spatial parallelization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chorin, A.J.: Numerical solution of the Navier Stokes equations. Math. Comput. 22(104), 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  2. Croce, R., Engel, M., Griebel, M., Klitz, M.: NaSt3DGP – a Parallel 3D Flow Solver. http://wissrech.ins.uni-bonn.de/research/projects/NaSt3DGP/index.htm

  3. Emmett, M., Minion, M.L.: Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7, 105–132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Farhat, C., Chandesris, M.: Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications. Int. J. Numer. Methods Eng. 58, 1397–1434 (2005)

    Article  MathSciNet  Google Scholar 

  5. Fischer, P.F., Hecht, F., Maday, Y.: A parareal in time semi-implicit approximation of the Navier-Stokes equations. In: Kornhuber, R., et al. (eds.) Domain Decomposition Methods in Science and Engineering. LNCSE, vol. 40, pp. 433–440. Springer, Berlin (2005)

    Chapter  Google Scholar 

  6. Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gaskell, P., Lau, A.: Curvature-compensated convective transport: SMART a new boundedness-preserving transport algorithm. Int. J. Numer. Methods Fluids 8, 617–641 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Griebel, M., Dornseifer, T., Neunhoeffer, T.: Numerical Simulation in Fluid Dynamics, a Practical Introduction. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  9. Leonard, B.: A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng. 19, 59–98 (1979)

    Article  MATH  Google Scholar 

  10. Lions, J.L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s. C. R. Acad. Sci. – Ser. I – Math. 332, 661–668 (2001)

    Google Scholar 

  11. Minion, M.L.: A hybrid parareal spectral deferred corrections method. Commun. Appl. Math. Comput. Sci. 5(2), 265–301 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ruprecht, D., Krause, R.: Explicit parallel-in-time integration of a linear acoustic-advection system. Comput. Fluids 59, 72–83 (2012)

    Article  MathSciNet  Google Scholar 

  13. Temam, R.: Sur l’approximation de la solution des equations de Navier-Stokes par la méthode des pas fractionnaires II. Arch. Ration. Mech. Anal. 33, 377–385 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  14. Trindade, J.M.F., Pereira, J.C.F.: Parallel-in-time simulation of the unsteady Navier-Stokes equations for incompressible flow. Int. J. Numer. Methods. Fluids 45, 1123–1136 (2004)

    Article  MATH  Google Scholar 

  15. Trindade, J.M.F., Pereira, J.C.F.: Parallel-in-time simulation of two-dimensional, unsteady, incompressible laminar flows. Numer. Heat Trans., Part B 50, 25–40 (2006)

    Google Scholar 

  16. van der Vorst, H.: Bi-CGStab: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631 (1992)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research is funded by the Swiss “High Performance and High Productivity Computing” initiative HP2C. Computational resources were provided by the Swiss National Supercomputing Centre CSCS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Croce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Croce, R., Ruprecht, D., Krause, R. (2014). Parallel-in-Space-and-Time Simulation of the Three-Dimensional, Unsteady Navier-Stokes Equations for Incompressible Flow. In: Bock, H., Hoang, X., Rannacher, R., Schlöder, J. (eds) Modeling, Simulation and Optimization of Complex Processes - HPSC 2012. Springer, Cham. https://doi.org/10.1007/978-3-319-09063-4_2

Download citation

Publish with us

Policies and ethics