Skip to main content

Who Were Where When? On the Use of Social Collective Intelligence in Computational Epidemiology

  • Chapter
  • First Online:
Social Collective Intelligence

Part of the book series: Computational Social Sciences ((CSS))

Abstract

A triangular (case, theoretical, and literature) study approach is used to investigate if and how social collective intelligence is useful to computational epidemiology. The hypothesis is that the former can be employed for assisting in converting data into useful information through intelligent analyses by deploying new methods from data analytics that render previously unintelligible data intelligible. A conceptual bridge is built between the two concepts of crowd signals and syndromic surveillance. A concise list of empirical observations supporting the hypothesis is presented. The key observation is that new social collective intelligence methods and algorithms allow for massive data analytics to stay with the individual, in micro. It is thus possible to provide the analyst with advice tailored to the individual and with relevant policies, without resorting to macro (statistical) analyses of homogeneous populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, R.M., May, R.M.: Population biology of infectious diseases: Part 1. Nature 280(5721), 361–367 (1979)

    Article  Google Scholar 

  2. Anderson, R.M., May, R.M.: Infectious Diseases of Humans—Dynamics and Control. Oxford Univ Press, Oxford (1991)

    Google Scholar 

  3. Arantes, A., Carvalho, E.S., Medeiros, E.A., Farhat, C.K., Mantese, O.C.: Use of statistical process control charts in the epidemiological surveillance of nosocomial infections. Rev. Saúde Pública 37(6), 768–774 (1993)

    Article  Google Scholar 

  4. Aurell, E., Kirkpatrick, S., Koski, T., Skoglund, M., Öktem, O.: KTH-Aalto initiative on big data to small information. ICT platform White Paper (2013). KTH

    Google Scholar 

  5. Batagelj, V., Mrvar, A.: Pajek—program for large network analysis. Connections 21(2), 47–57 (1998)

    Google Scholar 

  6. Boman, M., Ghaffar, A., Liljeros, F., Stenhem, M.: Social network visualization as a contact tracing tool. In: Jennings, N.e. (ed.) Proc AAMAS Workshop on Agent Technology for Disaster Management, pp. 131–133. Future University, Hakodate, Japan (2006)

    Google Scholar 

  7. Boman, M., Holm, E.: Multi-agent systems, time geography, and microsimulations. In: Olsson, M.O., Sjöstedt, G. (eds.) Systems Approaches and their Application, chap. 4, pp. 95–118. Springer, Netherlands (2004)

    Google Scholar 

  8. Bouam, S., Girou, E., Brun-Buisson, C., Lepage, E.: Development of a web-based clinical information system for surveillance of multiresistant organisms and nosocomial infections. In: Proc AMIA Symp, pp. 696–700 (1999)

    Google Scholar 

  9. Bowles, S., Gintis, H.: The inheritance of inequality. J. Econ. Perspect. 16(3), 3–30 (2002)

    Article  Google Scholar 

  10. Brandes, U., Kenis, P., Raab, J., Schneider, V., Wagner, D.: Explorations into the visualization of policy networks. Theor. Polit. 11, 75–106 (1999)

    Article  Google Scholar 

  11. Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439(7075), 462–465 (2006)

    Article  Google Scholar 

  12. Brouwers, L., Boman, M., Camitz, M., Mäkilä, K., Tegnell, A.: Micro-simulation of a smallpox outbreak using official register data. Eurosurveillance 15(35) (2010)

    Google Scholar 

  13. Brouwers, L., Cakici, B., Camitz, M., Tegnell, A., Boman, M.: Economic consequences to society of pandemic H1N1 influenza 2009: Preliminary results for Sweden. Eurosurveillance 14(37) (2009)

    Google Scholar 

  14. Cakici, B., Boman, M.: A workflow for software development within computational epidemiology. J. Comput. Sci. 2(3), 216–222 (2011)

    Article  Google Scholar 

  15. Cakici, B., Hebing, K., Grünewald, M., Saretok, P., Hulth, A.: CASE: a framework for computer supported outbreak detection. BMC Med. Inform. Decis. Making 10(14) (2010)

    Google Scholar 

  16. Chen, H., Zeng, D., Yan, P.: Infectious Disease Informatics: Syndromic Surveillance for Public Health and Bio-Defense, 1 edn. Springer, New York (2009)

    Google Scholar 

  17. Corley, C.D., Cook, D.J., Mikler, A.R., Singh, K.P.: Text and structural data mining of influenza mentions in web and social media. Environ. Res. Publ. Health 7(2), 596–615 (2010)

    Article  Google Scholar 

  18. Culotta, A.: Detecting influenza outbreaks by analyzing Twitter messages. arXiv:1007.4748v1 [cs.IR] (2010)

    Google Scholar 

  19. Eagle, N., Pentland, A.: Eigenbehaviors: identifying structure in routine. Behav. Ecol. Sociobiol. 63(7), 1057–1066 (2009)

    Article  Google Scholar 

  20. Espino, J.U., et al.: Removing a barrier to computer-based outbreak and disease surveillance–The RODS Open Source Project. MMWR Morb. Mortal Wkly. Rep. 53(Supplement), 32–39 (2004)

    Google Scholar 

  21. Eubank, A., et al.: Modelling disease outbreaks in realistic urban social networks. Nature 429, 180–184 (2004)

    Article  Google Scholar 

  22. Ferguson, N.M., et al.: Strategies for mitigating an influenza pandemic. Nature 442, 448–452 (2006)

    Article  Google Scholar 

  23. French, M.A.: Picturing public health surveillance: Tracing the material dimensions of information in ontario’s public health system. Ph.D. thesis, Queen’s University, Kingston, Ontario, Canada (2009). Dept of Sociology

    Google Scholar 

  24. Genesereth, M.R., Ketchpel, S.: Software agents. Comm. ACM 37(7), 48–ff. (1994). DOI 10.1145/176789.176794. URL http://doi.acm.org/10.1145/176789.176794

  25. González, M.C., Hidalgo, C.A., Barabási, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)

    Article  Google Scholar 

  26. Hall, M., Gani, R., Hughes, H.E., Leach, S.: Real-time epidemic forecasting for pandemic influenza. Epid Inf. 135(3), 372–385 (2007)

    Article  Google Scholar 

  27. Halloran, M.E., et al.: Modeling targeted layered containment of an influenza pandemic in the united states. PNAS 105(12), 4639–4644 (2008)

    Article  Google Scholar 

  28. Hedström, P., Swedberg, R. (eds.): Social Mechanisms: An Analytical Approach to Social Theory. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  29. Hewitt, C.: Offices are open systems. ACM Trans. Inf. Syst. 4(3), 271–287 (1986). DOI 10.1145/214427.214432. URL http://doi.acm.org/10.1145/214427.214432

  30. Holling, C.S.: Resilience and stability of ecological systems. Ann. Rev. Ecol. Stat. 4, 1–23 (1973)

    Article  Google Scholar 

  31. Hulth, A., Rydevik, G., Linde, A.: Web queries as a source for syndromic surveillance. PLoS ONE 4(2), e4378 (2009)

    Article  Google Scholar 

  32. Kirkpatrick, M.: Meet the firehose seven thousand times bigger than Twitter’s. ReadWriteWeb (2010)

    Google Scholar 

  33. Liljeros, F., Giesecke, J., Holme, P.: The contact network of inpatients in a regional healthcare system. a longitudinal case study. Math. Popul. Stud. 14(4), 269–284 (2007). DOI 10.1080/08898480701612899

  34. Lipsitch, M., et al.: Managing and reducing uncertainty in an emerging influenza pandemic. NEJM 361(2), 112–115 (2009)

    Article  MathSciNet  Google Scholar 

  35. Longini, I.M., et al.: Containing pandemic influenza at the source. Science 309(5737), 1083–1087 (2005). DOI 10.1126/science.1115717. URL http://www.ncbi.nlm.nih.gov/pubmed/16079251

  36. Lyon, D.: Surveillance Studies: An Overview. Polity Press, Cambridge (2007)

    Google Scholar 

  37. Marathe, M.V., Vullikanti, A.K.S.: Computational epidemiology. Comm. ACM 56(7), 88–96 (2013)

    Article  Google Scholar 

  38. Mulligan, M.E., et al.: Methicillin-resistant staphylococcus aureus: A consensus review of the microbiology, pathogenesis, and epidemiology with implications for prevention and management. Am. J. Med. 94(3), 313–328 (1993)

    Article  Google Scholar 

  39. Naaman, M.: Social multimedia: highlighting opportunities for search and mining of multimedia data in social media applications. Multimed. Tools Appl., 1–26 (2010)

    Google Scholar 

  40. Nagel, K., Beckman, R.J., Barrett, C.L.: TRANSIMS for regional planning. Int. J. Complex Syst. (1998). Manuscript 244

    Google Scholar 

  41. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ottino, J.M.: Engineering complex systems. Nature 427(6973), 399 (2004)

    Article  Google Scholar 

  43. Personalised medicine. European Commission, Futurium, Digital Agenda for Europe (2013). Http://ec.europa.eu/digital-agenda/futurium/en/content/personalised-medicine

  44. Rosenzweig, M.L.: Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time. Science 171(3969), 385–387 (1971)

    Article  Google Scholar 

  45. Sanches, P., Svee, E., Bylund, M., Hirsch, B., Boman, M.: Knowing your population: Privacy-sensitive mining of massive data. Netw. Comm. Tech. 2(1), 34–51 (2013)

    Google Scholar 

  46. Scheffer, M.: Critical Transitions in Nature and Society. Princeton University Press, Princeton (2009)

    Google Scholar 

  47. Scheffer, M. et al.: Early-warning signals for critical transitions. Nature 461, 53–58 (2009)

    Article  Google Scholar 

  48. Shiller, R.J.: From efficient markets theory to behavioral finance. J. Econ. Perspect. 17(1), 83–104 (2003)

    Article  Google Scholar 

  49. Smith, R.G., Mitchell, T.M., Chestek, R.A., Buchanan, B.G.: A model for learning systems. In: Proc IJCAI, pp. 338–343. Cambridge, MA (1977)

    Google Scholar 

  50. Song, C., Koren, T., Wang, P., Barabási, A.L.: Modelling the scaling properties of human mobility. Nat. Phys. 6(10), 818–823 (2010)

    Article  Google Scholar 

  51. Song, C., Qu, Z., Blumm, N., Barabási, A.L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Steels, L.: Cooperation between distributed agents through self-organisation. In: Decentralized A.I: Proc Modelling Autonomous Agents in a Multi-Agent World (MAAMAW), pp. 175–196. North-Holland (1990)

    Google Scholar 

  53. Upbin, B.: IBM’s Watson gets its first piece of business in healthcare. Forbes (2013). TECH 2/08/13

    Google Scholar 

  54. Vespignani, A.: Predicting the behavior of Techno-Social systems. Science 325(5939), 425–428 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zlemells, K.: Complex systems. Nature 410(6825), 241 (2001)

    Google Scholar 

Download references

Acknowledgements

This chapter emerged from experiences gathered over a period of almost 10 years of working as a computational epidemiologist. The author spent time in 2011 and 2012 as a research fellow at the Etisalat BT Innovation Center (EBTIC) in Abu Dhabi, serving the local health authorities (HAAD), and some of the work reported on in this chapter was carried out at EBTIC, where Benjamin Hirsch led the work. Two keynotes at specialist conferences and a short presentation at a Social-IST meeting in 2013 generated a lot of comments and questions, some of which have been included here. The section on MRSA benefited considerably from illustrations and text from the co-authors of an earlier short paper: Asim Ghaffar, Fredrik Liljeros, and Mikael Stenhem. Some of the ideas in this chapter have also been used for research applications over the years, and some of the formulations here were in connection with this improved by SICS colleagues Anders Holst, Björn Bjurling, Markus Bylund, Pedro Sanches, Baki Cakici, and Daniel Gillblad. Baki Cakici provided the author with important comments on earlier sketches of this chapter. Last but not least, the author wishes to express his sincere thanks to Daniele Miorandi for generously sharing his insights on social collective intelligence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Boman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boman, M. (2014). Who Were Where When? On the Use of Social Collective Intelligence in Computational Epidemiology. In: Miorandi, D., Maltese, V., Rovatsos, M., Nijholt, A., Stewart, J. (eds) Social Collective Intelligence. Computational Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-08681-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08681-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08680-4

  • Online ISBN: 978-3-319-08681-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics