Skip to main content

Local Characteristics of Minority Examples in Pre-processing of Imbalanced Data

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8502))

Included in the following conference series:

Abstract

Informed pre-processing methods for improving classifiers learned from class-imbalanced data are considered. We discuss different ways of analyzing the characteristics of local distributions of examples in such data. Then, we experimentally compare main informed pre-processing methods and show that identifying types of minority examples depending on their k nearest neighbourhood may help in explaining differences in performance of these methods. Finally, we exploit the information about the local neighbourhood to modify the oversampling ratio in a SMOTE–related method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batista, G., Prati, R., Monard, M.: A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explorations Newsletter 6(1), 20–29 (2004)

    Article  Google Scholar 

  2. Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: SMOTE: Synthetic Minority Over-sampling Technique. J. of Artificial Intelligence Research 16, 341–378 (2002)

    Google Scholar 

  3. He, H.: Yungian Ma: Imbalanced Learning. Foundations, Algorithms and Applications. IEEE - Wiley (2013)

    Google Scholar 

  4. Jo, T., Japkowicz, N.: Class Imbalances versus small disjuncts. SIGKDD Explorations 6(1), 40–49 (2004)

    Article  MathSciNet  Google Scholar 

  5. Kubat, M., Matwin, S.: Addresing the curse of imbalanced training sets: one-side selection. In: Proc. of the 14th Int. Conf. on Machine Learning, pp. 179–186 (1997)

    Google Scholar 

  6. Laurikkala, J.: Improving identification of difficult small classes by balancing class distribution. Tech. Report A-2001-2. University of Tampere (2001)

    Google Scholar 

  7. Maciejewski, T., Stefanowski, J.: Local neighbourhood extension of SMOTE for mining imbalanced data. In: Proc. IEEE Symp. on Computational Intelligence and Data Mining, pp. 104–111 (2011)

    Google Scholar 

  8. Napierala, K.: Improving rule classifiers for imbalanced data. Ph.D. Thesis. Poznan University of Technology (2013)

    Google Scholar 

  9. Napierała, K., Stefanowski, J., Wilk, S.: Learning from Imbalanced Data in Presence of Noisy and Borderline Examples. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS (LNAI), vol. 6086, pp. 158–167. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Napierala, K., Stefanowski, J.: Identification of different types of minority class examples in imbalanced data. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part II. LNCS, vol. 7209, pp. 139–150. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Stefanowski, J., Wilk, S.: Selective pre-processing of imbalanced data for improving classification performance. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 283–292. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. Journal of Artifical Intelligence Research 6, 1–34 (1997)

    MATH  MathSciNet  Google Scholar 

  13. Wilson, D.R., Martinez, T.: Reduction techniques for instance-based learning algorithms. Machine Learning Journal 38, 257–286 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Stefanowski, J., Napierała, K., Trzcielińska, M. (2014). Local Characteristics of Minority Examples in Pre-processing of Imbalanced Data. In: Andreasen, T., Christiansen, H., Cubero, JC., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2014. Lecture Notes in Computer Science(), vol 8502. Springer, Cham. https://doi.org/10.1007/978-3-319-08326-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08326-1_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08325-4

  • Online ISBN: 978-3-319-08326-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics