Skip to main content

Computational Methods for the Fourier Analysis of Sparse High-Dimensional Functions

  • Chapter
  • First Online:
Extraction of Quantifiable Information from Complex Systems

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 102))

Abstract

A straightforward discretisation of high-dimensional problems often leads to a curse of dimensions and thus the use of sparsity has become a popular tool. Efficient algorithms like the fast Fourier transform (FFT) have to be customised to these thinner discretisations and we focus on two major topics regarding the Fourier analysis of high-dimensional functions: We present stable and effective algorithms for the fast evaluation and reconstruction of multivariate trigonometric polynomials with frequencies supported on an index set \(\mathcal{I}\subset \mathbb{Z}^{d}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aydıner, A.A., Chew, W.C., Song, J., Cui, T.J.: A sparse data fast Fourier transform (SDFFT). IEEE Trans. Antennas Propag. 51(11), 3161–3170 (2003)

    Article  Google Scholar 

  2. Bass, R.F., Gröchenig, K.: Random sampling of multivariate trigonometric polynomials. SIAM J. Math. Anal. 36, 773–795 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baszenski, G., Delvos, F.J.: A discrete Fourier transform scheme for Boolean sums of trigonometric operators. In: Chui, C.K., Schempp, W., Zeller, K. (eds.) Multivariate Approximation Theory IV. ISNM, vol. 90, pp. 15–24. Birkhäuser, Basel (1989)

    Chapter  Google Scholar 

  4. Bebendorf, M.: Hierarchical Matrices. Lecture Notes in Computational Science and Engineering, vol. 63. Springer, Berlin (2008)

    Google Scholar 

  5. Beylkin, G.: On the fast Fourier transform of functions with singularities. Appl. Comput. Harmon. Anal. 2, 363–381 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  7. Bungartz, H.J., Griebel, M.: A note on the complexity of solving Poisson’s equation for spaces of bounded mixed derivatives. J. Complex. 15, 167–199 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  Google Scholar 

  9. Candès, E.J.: Compressive sampling. In: International Congress of Mathematicians, vol. III, pp. 1433–1452. European Mathematical Society, Zürich (2006)

    Google Scholar 

  10. Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51, 4203–4215 (2005)

    Article  MATH  Google Scholar 

  11. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  12. Cools, R., Kuo, F.Y., Nuyens, D.: Constructing lattice rules based on weighted degree of exactness and worst case error. Computing 87, 63–89 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Demanet, L., Ferrara, M., Maxwell, N., Poulson, J., Ying, L.: A butterfly algorithm for synthetic aperture radar imaging. SIAM J. Imaging Sci. 5, 203–243 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dutt, A., Rokhlin, V.: Fast Fourier transforms for nonequispaced data II. Appl. Comput. Harmon. Anal. 2, 85–100 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Edelman, A., McCorquodale, P., Toledo, S.: The future fast Fourier transform? SIAM J. Sci. Comput. 20, 1094–1114 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Feichtinger, H.G., Gröchenig, K., Strohmer, T.: Efficient numerical methods in non-uniform sampling theory. Numer. Math. 69, 423–440 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Filbir, F., Themistoclakis, W.: Polynomial approximation on the sphere using scattered data. Math. Nachr. 281, 650–668 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Foucart, S., Rauhut, H.: A mathematical introduction to compressive sensing. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York (2013)

    Book  MATH  Google Scholar 

  21. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  22. Griebel, M., Hamaekers, J.: Fast discrete Fourier transform on generalized sparse grids (2013). University of Bonn, INS Preprint No. 1305

    Google Scholar 

  23. Grishin, D., Strohmer, T.: Fast multi-dimensional scattered data approximation with Neumann boundary conditions. Linear Algebra Appl. 391, 99–123 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gröchenig, K.: Reconstruction algorithms in irregular sampling. Math. Comput. 59, 181–194 (1992)

    Article  MATH  Google Scholar 

  25. Gröchenig, K., Pötscher, B., Rauhut, H.: Learning trigonometric polynomials from random samples and exponential inequalities for eigenvalues of random matrices (2007, preprint). arXiv:math/0701781

    Google Scholar 

  26. Hackbusch, W.: Hierarchische Matrizen. Algorithmen und Analysis. Springer, Berlin/ Heidelberg (2009)

    Google Scholar 

  27. Hallatschek, K.: Fouriertransformation auf dünnen Gittern mit hierarchischen Basen. Numer. Math. 63, 83–97 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Nearly optimal sparse Fourier transform. In: STOC, New York (2012)

    Google Scholar 

  29. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Simple and practical algorithm for sparse Fourier transform. In: SODA, Kyoto, pp. 1183–1194 (2012)

    Google Scholar 

  30. Heider, S., Kunis, S., Potts, D., Veit, M.: A sparse prony FFT. In: 10th International Conference on Sampling Theory and Applications, Bremen (2013)

    Google Scholar 

  31. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  32. Kämmerer, L.: Reconstructing multivariate trigonometric polynomials by sampling along generated sets. In: Dick, J., Kuo, F.Y., Peters, G.W., Sloan, I.H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012, pp. 439–454. Springer, Berlin (2013)

    Chapter  Google Scholar 

  33. Kämmerer, L.: Reconstructing hyperbolic cross trigonometric polynomials by sampling along rank-1 lattices. SIAM J. Numer. Anal. 51, 2773–2796 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kämmerer, L.: Reconstructing multivariate trigonometric polynomials from samples along rank-1 lattices. in: Approximation Theory XIV: San Antonio 2013, G.E. Fasshauer and L.L. Schumaker (eds.), Springer International Publishing, 255–271 (2014)

    Google Scholar 

  35. Kämmerer, L., Kunis, S.: On the stability of the hyperbolic cross discrete Fourier transform. Numer. Math. 117, 581–600 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kämmerer, L., Kunis, S., Potts, D.: Interpolation lattices for hyperbolic cross trigonometric polynomials. J. Complex. 28, 76–92 (2012)

    Article  MATH  Google Scholar 

  37. Kämmerer, L., Potts, D., Volkmer, T.: Approximation of multivariate functions by trigonometric polynomials based on rank-1 lattice sampling. Preprint 145, DFG Priority Program 1324 (2013)

    Google Scholar 

  38. Kämmerer, L., Potts, D., Volkmer, T.: Approximation of multivariate periodic functions by trigonometric polynomials based on sampling along rank-1 lattice with generating vector of Korobov form. Preprint 159, DFG Priority Program 1324 (2014)

    Google Scholar 

  39. Keiner, J., Kunis, S., Potts, D.: Fast summation of radial functions on the sphere. Computing 78, 1–15 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  40. Keiner, J., Kunis, S., Potts, D.: Using NFFT3 – a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Softw. 36, Article 19, 1–30 (2009)

    Google Scholar 

  41. Kunis, S., Melzer, I.: A stable and accurate butterfly sparse Fourier transform. SIAM J. Numer. Anal. 50, 1777–1800 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  42. Kunis, S., Potts, D.: Stability results for scattered data interpolation by trigonometric polynomials. SIAM J. Sci. Comput. 29, 1403–1419 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Kunis, S., Rauhut, H.: Random sampling of sparse trigonometric polynomials II, orthogonal matching pursuit versus basis pursuit. Found. Comput. Math. 8, 737–763 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  44. Mallat, S., Zhang, Z.: Matching pursuit with time-frequency dictionaries. IEEE Trans. Signal Process. 41, 3397–3415 (1993)

    Article  MATH  Google Scholar 

  45. Mhaskar, H.N., Narcowich, F.J., Ward, J.D.: Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature. Math. Comput. 70, 1113–1130 (2001). Corrigendum on the positivity of the quadrature weights in 71, 453–454 (2002)

    MathSciNet  Google Scholar 

  46. Michielssen, E., Boag, A.: A multilevel matrix decomposition algorithm for analyzing scattering from large structures. IEEE Trans. Antennas Propag. 44, 1086–1093 (1996)

    Article  Google Scholar 

  47. Needell, D., Vershynin, R.: Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found. Comput. Math. 9, 317–334 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  48. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems Volume II: Standard Information for Functionals. EMS Tracts in Mathematics, vol. 12. European Mathematical Society, Zürich (2010)

    Google Scholar 

  49. O’Neil, M., Woolfe, F., Rokhlin, V.: An algorithm for the rapid evaluation of special function transforms. Appl. Comput. Harmon. Anal. 28, 203–226 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  50. Peter, T., Plonka, G.: A generalized prony method for reconstruction of sparse sums of eigenfunctions of linear operators. Inverse Probl. 29, 025,001 (2013)

    Article  MathSciNet  Google Scholar 

  51. Peter, T., Potts, D., Tasche, M.: Nonlinear approximation by sums of exponentials and translates. SIAM J. Sci. Comput. 33, 314–334 (2011)

    Article  MathSciNet  Google Scholar 

  52. Potts, D., Steidl, G., Tasche, M.: Fast Fourier transforms for nonequispaced data: a tutorial. In: Benedetto, J.J., Ferreira, P.J.S.G. (eds.) Modern Sampling Theory: Mathematics and Applications, pp. 247–270. Birkhäuser, Boston (2001)

    Chapter  Google Scholar 

  53. Potts, D., Tasche, M.: Parameter estimation for exponential sums by approximate Prony method. Signal Process. 90, 1631–1642 (2010)

    Article  MATH  Google Scholar 

  54. Potts, D., Tasche, M.: Parameter estimation for nonincreasing exponential sums by Prony-like methods. Linear Algebra Appl. 439, 1024–1039 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  55. Rauhut, H.: Random sampling of sparse trigonometric polynomials. Appl. Comput. Harmon. Anal. 22, 16–42 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  56. Rauhut, H.: On the impossibility of uniform sparse reconstruction using greedy methods. Sampl. Theory Signal Image Process. 7, 197–215 (2008)

    MATH  MathSciNet  Google Scholar 

  57. Rauhut, H.: Stability results for random sampling of sparse trigonometric polynomials. IEEE Trans. Inf. Theory 54, 5661–5670 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  58. Sickel, W., Ullrich, T.: The Smolyak algorithm, sampling on sparse grids and function spaces of dominating mixed smoothness. East J. Approx. 13, 387–425 (2007)

    MathSciNet  Google Scholar 

  59. Sloan, I.H., Joe, S.: Lattice methods for multiple integration. Oxford Science Publications. The Clarendon Press/Oxford University Press, New York (1994)

    MATH  Google Scholar 

  60. Steidl, G.: A note on fast Fourier transforms for nonequispaced grids. Adv. Comput. Math. 9, 337–353 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  61. Temlyakov, V.N.: Approximation of functions with bounded mixed derivative. Trudy Mat. Inst. Steklov (Proc. Steklov Inst. Math. (1989)), vol. 178 (1986)

    Google Scholar 

  62. Tygert, M.: Fast algorithms for spherical harmonic expansions, III. J. Comput. Phys. 229, 6181–6192 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  63. Ying, L.: Sparse Fourier transform via butterfly algorithm. SIAM J. Sci. Comput. 31, 1678–1694 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  64. Ying, L., Biros, G., Zorin, D.: A kernel-independent adaptive fast multipole method in two and three dimensions. J. Comput. Phys. 196, 591–626 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  65. Ying, L., Fomel, S.: Fast computation of partial Fourier transforms. Multiscale Model. Simul. 8, 110–124 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  66. Yserentant, H.: Regularity and Approximability of Electronic Wave Functions. Lecture Notes in Mathematics. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support by the German Research Foundation (DFG) within the Priority Program 1324, project PO 711/10-2 and KU 2557/1-2. Moreover, Ines Melzer and Stefan Kunis gratefully acknowledge their support by the Helmholtz Association within the young investigator group VH-NG-526.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kunis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kämmerer, L., Kunis, S., Melzer, I., Potts, D., Volkmer, T. (2014). Computational Methods for the Fourier Analysis of Sparse High-Dimensional Functions. In: Dahlke, S., et al. Extraction of Quantifiable Information from Complex Systems. Lecture Notes in Computational Science and Engineering, vol 102. Springer, Cham. https://doi.org/10.1007/978-3-319-08159-5_17

Download citation

Publish with us

Policies and ethics