Skip to main content

Approximating the Sparsest k-Subgraph in Chordal Graphs

  • Conference paper
Book cover Approximation and Online Algorithms (WAOA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8447))

Included in the following conference series:

Abstract

Given a simple undirected graph G = (V, E) and an integer k < |V|, the Sparsest k -Subgraph problem asks for a set of k vertices which induces the minimum number of edges. As a generalization of the classical independent set problem, Sparsest k -Subgraph is \(\mathcal{NP}\)-hard and even not approximable unless \(\mathcal{P} = \mathcal{NP}\) in general graphs. Thus, we investigate Sparsest k -Subgraph in graph classes where independent set is polynomial-time solvable, such as subclasses of perfect graphs. Our two main results are the \(\mathcal{NP}\)-hardness of Sparsest k -Subgraph on chordal graphs, and a greedy 2-approximation algorithm. Finally, we also show how to derive a PTAS for Sparsest k -Subgraph on proper interval graphs.

This work has been funded by grant ANR 2010 BLAN 021902.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apollonio, N., Sebő, A.: Minconvex factors of prescribed size in graphs. SIAM Journal of Discrete Mathematics 23(3), 1297–1310 (2009)

    Article  MATH  Google Scholar 

  2. Apollonio, N., Simeone, B.: The maximum vertex coverage problem on bipartite graphs. Preprint (2013)

    Google Scholar 

  3. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting high log-densities: An \(\mathcal{O}(n^{1/4})\) approximation for densest k-subgraph. In: Proceedings of the 42nd ACM symposium on Theory of Computing, pp. 201–210. ACM (2010)

    Google Scholar 

  4. Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V., Pottié, O.: The max quasi-independent set problem. Journal of Combinatorial Optimization 23(1), 94–117 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Broersma, H., Golovach, P.A., Patel, V.: Tight complexity bounds for FPT subgraph problems parameterized by clique-width. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 207–218. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Bshouty, N., Burroughs, L.: Massaging a linear programming solution to give a 2-approximation for a generalization of the vertex cover problem. In: Meinel, C., Morvan, M., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 298–308. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Cai, L.: Parameterized complexity of cardinality constrained optimization problems. Computer Journal 51(1), 102–121 (2008)

    Article  Google Scholar 

  8. Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discrete Applied Mathematics 9(1), 27–39 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pacific J. Math. 15, 835–855 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  10. Goldschmidt, O., Hochbaum, D.S.: k-edge subgraph problems. Discrete Applied Mathematics 74(2), 159–169 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of vertex cover variants. Theory of Computing Systems 41(3), 501–520 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Joret, G., Vetta, A.: Reducing the rank of a matroid. CoRR, abs/1211.4853 (2012)

    Google Scholar 

  13. Kneis, J., Langer, A., Rossmanith, P.: Improved upper bounds for partial vertex cover. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 240–251. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Liazi, M., Milis, I., Zissimopoulos, V.: A constant approximation algorithm for the densest k-subgraph problem on chordal graphs. Information Processing Letters 108(1), 29–32 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nonner, T.: PTAS for densest k-subgraph in interval graphs. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 631–641. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Watrigant, R., Bougeret, M., Giroudeau, R.: The k-sparsest subgraph problem. Technical Report RR-12019, LIRMM (2012)

    Google Scholar 

  17. Watrigant, R., Bougeret, M., Giroudeau, R.: Approximating the sparsest k-subgraph in chordal graphs. Technical Report hal-00868188, LIRMM (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Watrigant, R., Bougeret, M., Giroudeau, R. (2014). Approximating the Sparsest k-Subgraph in Chordal Graphs. In: Kaklamanis, C., Pruhs, K. (eds) Approximation and Online Algorithms. WAOA 2013. Lecture Notes in Computer Science, vol 8447. Springer, Cham. https://doi.org/10.1007/978-3-319-08001-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08001-7_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08000-0

  • Online ISBN: 978-3-319-08001-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics