Skip to main content

Lunar Perturbation of the Metric Associated to the Averaged Orbital Transfer

  • Chapter
Analysis and Geometry in Control Theory and its Applications

Part of the book series: Springer INdAM Series ((SINDAMS,volume 11))

  • 1106 Accesses

Abstract

In a series of previous article (Bonnard and Caillau, Ann Inst H Poincaré Anal Non Linéaire 24(3):395–411, 2007; Forum Math 21(5):797–814, 2009), we introduced a Riemannian metric associated to the energy minimizing orbital transfer with low propulsion. The aim of this article is to study the deformation of this metric due to a standard perturbation in space mechanics, the lunar attraction. Using Hamiltonian formalism, we describe the effects of the perturbation on the orbital transfers and the deformation of the conjugate and cut loci of the original metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonnard, B., Caillau, J.-B.: Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust. Ann. Inst. H. Poincaré Anal. Non Linéaire 24(3), 395–411 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonnard, B., Caillau, J.-B.: Geodesic flow of the averaged controlled Kepler equation. Forum Math. 21(5), 797–814 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bryson Jr., A.E., Ho, Y.C.: Applied Optimal Control. Hemisphere Publishing Corp. Washington, DC (1975)

    Google Scholar 

  4. Carathéodory, C.: Calculus of Variations and Partial Differential Equations of the First Order. Part I: Partial Differential Equations of the First Order. Chelsea Publishing Company, New York (1982)

    Google Scholar 

  5. Celletti, A., Chierchia, L.: KAM stability for a three-body problem of the solar system. Z. Angew. Math. Phys. 57(1), 33–41 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cots, O.: Contrôle optimal géométrique: méthodes homotopiques et applications. PhD thesis, Université de Bourgogne (2012)

    Google Scholar 

  7. Domingos, R.C., Vilhena de Moraes, R., Bertachini De Almeida Prado, A.F.: Third-body perturbation in the case of elliptic orbits for the disturbing body. Math. Probl. Eng. Art. ID 763654, 2008(14) (2008)

    Google Scholar 

  8. Edelbaum, T.N.: Optimum low-thrust rendezvous and station keeping. AIAA J. 2, 1196–1201 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edelbaum, T.N.: Optimum power-limited orbit transfer in strong gravity fields. AIAA J. 3, 921–925 (1965)

    Article  MathSciNet  Google Scholar 

  10. Geffroy, S.: Généralisation des techniques de moyennation en contrôle optimal, application aux problèmes de rendez-vous orbitaux à poussée faible. PhD thesis, INPT (1997)

    Google Scholar 

  11. Geffroy, S., Epenoy, R.: Optimal low-thrust transfers with constraints—generalization of averaging techniques. Acta Astronaut. 41(3), 133–149 (1997)

    Article  Google Scholar 

  12. Nemytskii, V.V., Stepanov, V.V.: Qualitative Theory of Differential Equations. Princeton University Press, Princeton (1960)

    MATH  Google Scholar 

  13. Pascoli, G.: Astronomie Fondamentale. Dunod, Paris (2000)

    Google Scholar 

  14. Poincaré, H.: Œuvres. Tome VII. Éditions Jacques Gabay, Sceaux (1996)

    Google Scholar 

  15. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Interscience Publishers/Wiley, New York/London (1962)

    MATH  Google Scholar 

  16. Vinti, J.P., Der, G.J., Bonavito, N.L.: Orbital and Celestial Mechanics. American Institute of Aeronautics and Astronautics, Reston (1998)

    MATH  Google Scholar 

  17. Zarrouati, O.: Trajectoires Spatiales. CEPADUES-EDITIONS, Toulouse (1987)

    Google Scholar 

Download references

Acknowledgements

Work supported in part by the French Space Agency CNES, R&T action R-S13/BS-005-012 and by the region Provence-Alpes-Côte d’Azur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Bonnard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bonnard, B., Henninger, H., Rouot, J. (2015). Lunar Perturbation of the Metric Associated to the Averaged Orbital Transfer. In: Bettiol, P., Cannarsa, P., Colombo, G., Motta, M., Rampazzo, F. (eds) Analysis and Geometry in Control Theory and its Applications. Springer INdAM Series, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-06917-3_3

Download citation

Publish with us

Policies and ethics