Skip to main content

Non-intrusive Uncertainty Quantification with Sparse Grids for Multivariate Peridynamic Simulations

  • Conference paper
  • First Online:
Book cover Meshfree Methods for Partial Differential Equations VII

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 100))

Abstract

Peridynamics is an accepted method in engineering for modeling crack propagation on a macroscopic scale. However, the sensitivity of the method to two important model parameters – elasticity and the particle density – has not yet been studied. Motivated by Silling and Askari (Comput Struct 83(17–18):1526–1535, 2005) and Kidane et al. (J Mech Phys Solids 60(5):983–1001, 2012) we use Peridynamics to simulate a high-speed projectile impacting a plate and study the overall damage on the plate. We have extended the setting by the magnitude of the force of the indenter and selected the parameter range such that a sharp transition in the response function occurs.We describe the simulation setting as an uncertainty quantification problem and use a non-intrusive stochastic collocation method based on spatially adaptive sparse grids to propagate the uncertainty. We show first convincing results of its successful application to Peridynamics and compare to Monte Carlo sampling.If the magnitude of the force is deterministic, a strong sensitivity of the damage in the plate with respect to the elasticity factor can be shown for the 2-dimensional setting. If it is non-deterministic, it dominates the simulation and explains most of the variance of the solution. The error of the expectation value estimation reaches an early saturation point for the studied collocation methods: We found parameter ranges where the quantity of interest oscillates. Moreover, faster convergence and higher robustness than for the Monte Carlo method can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Archibald, R. Deiterding, J. Jakeman, Extending adaptive sparse grids for stochastic collocation to hybrid parallel architectures, Oak Ridge National Lab, No. 4, 2–6 Jan (2012)

    Google Scholar 

  2. H.-J. Bungartz, S. Dirnstorfer, Multivariate quadrature on adaptive sparse grids. Computing 71(1), 89–114 (2003). (English)

    Article  MATH  MathSciNet  Google Scholar 

  3. H.-J. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 1–123 (2004)

    Article  MathSciNet  Google Scholar 

  4. R.E. Caflisch, Monte Carlo and quasi-Monte Carlo methods. Acta Numer. 7, 1–49 (1998)

    Article  MathSciNet  Google Scholar 

  5. B. Ganapathysubramanian, N. Zabaras, Sparse grid collocation schemes for stochastic natural convection problems. Comput. Phys. 225(1), 652–685 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Griebel, Sparse grids and related approximation schemes for higher dimensional problems, in Proceedings of the conference on Foundations of Computational Mathematics (FoCM05), Santander, Spain

    Google Scholar 

  7. M. Griebel, M. Holtz, Dimension-wise integration of high-dimensional functions with applications to finance. J. Complex. 26(5), 455–489 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Jakeman, R. Archibald, D. Xiu, Characterization of discontinuities in high-dimensional stochastic problems on adaptive sparse grids. Comput. Phys. 230(10), 3977–3997 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Kidane, A. Lashgari, B. Li, M. McKerns, M. Ortiz, H. Owhadi, G. Ravichandran, M. Stalzer, T.J. Sullivan, Rigorous model-based uncertainty quantification with application to terminal ballistics, part I: systems with controllable inputs and small scatter. J. Mech. Phys. Solids 60(5), 983–1001 (2012)

    Article  Google Scholar 

  10. X. Ma, N. Zabaras, An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. Comput. Phys. 228(8), 3084–3113 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. F. Nobile, R. Tempone, C.G. Webster, A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Oladyshkin, H. Class, R. Helmig, W. Nowak, A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations. Adv. Water Resour. 34(11), 1508–1518 (2011)

    Article  Google Scholar 

  13. M.L. Parks, R.B. Lehoucq, S.J. Plimpton, S. Silling, Implementing peridyanmics within a molecular dynamics code. Comput. Phys. Commun. 179, 777–783 (2008)

    Article  MATH  Google Scholar 

  14. M.L. Parks, P. Seleson, S.J. Plimpton, S. Silling, R.B. Lehoucq, Peridynamics with LAMMPS: a user guide v0.3 beta. Sandia report, Sandia National Laboratories, Nov 2011

    Google Scholar 

  15. D. Pflüger, Spatially Adaptive Sparse Grids for High-Dimensional Problems (Verlag Dr. Hut, München, 2010)

    Google Scholar 

  16. D. Pflüger, Spatially adaptive refinement, in Sparse Grids and Applications. LNCSE (Springer, 2012), pp. 243–262

    Google Scholar 

  17. D. Pflüger, B. Peherstorfer, H.-J. Bungartz, Spatially adaptive sparse grids for high-dimensional data-driven problems. J. Complex. 26(5), 508–522 (2010)

    Article  MATH  Google Scholar 

  18. M. Rosenblatt, Remarks on a multivariate transformation. Ann. Math. Stat. 23(1952), 470–472 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, S. Tarantola, Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 181(2), 259–270 (2010)

    MATH  MathSciNet  Google Scholar 

  20. S. Silling, Reformulation of elasticity theory for discontinuties and long-range forces. Sandia report SAND98-2176, Sandia National Laboratories, 1998

    Google Scholar 

  21. S. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83(17–18), 1526–1535 (2005)

    Article  Google Scholar 

  22. I.M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. D. Stirzaker, Elementary Probability (Cambridge University Press, Cambridge/New York, 2003)

    Book  MATH  Google Scholar 

  24. X. Wan, E. Karniadakis, Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J. Sci. Comput. 3, 901–928 (2006)

    Article  MathSciNet  Google Scholar 

  25. D. Xiu, E. Karniadakis, The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Xiu, E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos. Comput. Phys. 187(1), 137–167 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. G. Zhang, D. Lu, M. Ye, M. Gunzburger, C.G. Webster, An adaptive sparse-grid high-order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling. Adv. Water Resour. 49(10), 6871–6892 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Franzelin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Franzelin, F., Diehl, P., Pflüger, D. (2015). Non-intrusive Uncertainty Quantification with Sparse Grids for Multivariate Peridynamic Simulations. In: Griebel, M., Schweitzer, M. (eds) Meshfree Methods for Partial Differential Equations VII. Lecture Notes in Computational Science and Engineering, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-06898-5_7

Download citation

Publish with us

Policies and ethics