Skip to main content

Predicting Future Claims Among High Risk Policyholders Using Random Effects

  • Chapter
  • First Online:
Book cover Modern Problems in Insurance Mathematics

Part of the book series: EAA Series ((EAAS))

  • 1809 Accesses

Abstract

Insurance claims are often modelled by a standard Poisson model with fixed effects. With such a model, no individual adjustments are made to account for unobserved heterogeneity between policyholders. A Poisson model with random effects makes it possible to detect policyholders with a high or low individual risk. The premium can then be adjusted accordingly. Others have applied such models without much focus on the model’s prediction performance. As the usefulness of an insurance claims model typically is measured by its ability to predict future claims, we have chosen to focus on this aspect of the model. We model insurance claims with a Poisson random effects model and compare its performance with the standard Poisson fixed effects model. We show that the random effects model both fits the data better and gives better predictions for future claims for high risk policy holders than the standard model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agresti, A.: Categorical Data Analysis, 2nd edn. Wiley-Interscience, Hoboken (2000)

    Google Scholar 

  2. Antonio, K., Valdez, E.A.: Statistical concepts of a priori and a posteriori risk classification in insurance. AStA Adv. Stat. Anal. 96, 187–224 (2012)

    Google Scholar 

  3. Bates, D., Maechler, M., Bolker, B.: lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-42 (2011)

    Google Scholar 

  4. Boucher, J.-P., Denuit, M.: Fixed versus random effects in Poisson regression models for claim counts: A case study with motor insurance. Astin Bulletin 36(1), 285–301 (2006)

    Google Scholar 

  5. Boucher, J.-P., Denuit, M.: Duration dependence models for claim counts. Deutsche Gesellschaft für Versicherungsmathematik (Ger. Actuar. Bull.) 28(1), 29–45 (2007)

    Google Scholar 

  6. Boucher, J.-P., Denuit, M., Guillen, M.: Models of insurance claim counts with time dependence based on generalization of Poisson and negative binomial distribuitions. Variance 2(1), 135–162 (2008)

    Google Scholar 

  7. Boucher, J.-P., Denuit, M., Guillen, M.: Number of accidents or number of claims? An approach with zero-inflated poisson models for panel data. J. Risk Insur. 76(4), 821–845 (2009)

    Google Scholar 

  8. Boucher, J.-P., Guillén, M.: A survey on models for panel count data with applications to insurance. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales 103(2), 277–295 (2009)

    Google Scholar 

  9. Broström, G., Holmberg, H.: glmmML: Generalized linear models with clustering. R package version 0.81-8 (2011)

    Google Scholar 

  10. Fawcett, T.: An introduction to Roc analysis. Pattern Recogn. Lett. 19, 861–874 (2006)

    Google Scholar 

  11. Jong, P.D., Heller, G.Z.: Generalized Linear Models for Insurance Data, ch. 5.5, Cambridge University Press, Cambridge (2008)

    Google Scholar 

  12. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria (2012). ISBN 3-900051-07-0. http://www.R-project.org

  13. Rönnegård, L., Shen, X., Alam, M.: The hglm package. R package version 1.2 (2011)

    Google Scholar 

  14. Tomberlin, T.J.: Predicting accident frequencies for drivers classified by two factors. J. Am. Stat. Assoc. 83(402), 309–321 (1988)

    Article  Google Scholar 

  15. Yau, K.W., Yip, K.C.H., Yuen, H.K.: Modelling repeated insurance claim frequency data using the generalized linear mixed model. J. Appl. Stat. 30(8), 857–865 (2003). doi:10.1080/0266476032000075949

  16. Zhang, H., Lu, N., Feng, C., Thurston, S.W., Xia, Y., Zhu, L., Tu, X.M.: On fitting generalized mixed-effects models for binary responses using different statistical packages. Stat. Med. 30(20), 2562–2572 (2011)

    Google Scholar 

Download references

Acknowledgments

This work was financed by the centre Statistics for innovation (sfi\(^2\)). The authors thank Gjensidige for kindly providing the data and Lars Holden for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara-Cecilie Günther .

Editor information

Editors and Affiliations

Appendix

Appendix

We will prove the relations in Eq.  11.9 between the observed data and the fitted values from the mixed effects model. By Eq.  11.7 the loglikelihood becomes

$$\begin{aligned} l=\sum _{i=1}^N \left[ \sum _{t=1}^{t_i} \left\{ y_{\textit{it}}\log \lambda _{\textit{it}}^{\text{ RE }} + y_{\textit{it}}\log e_{\textit{it}} -\log (y_{\textit{it}} !)\right\} +\log \left\{ (-1)^{y_{i,\text{ tot }}}L^{(y_{i,\text{ tot }})}(\Lambda _i^{\text{ RE }})\right\} \right] . \end{aligned}$$

Now \(\lambda _{\textit{it}}^{\text{ RE }} =\mathrm{{exp}}\left\{ \beta _0^{\text{ RE }}+{\varvec{x}}_{\textit{it}}^\textit{T} \, {\beta }^{\text{ RE }}\right\} \) and \(\Lambda _i^{\text{ RE }}=\sum _{t=1}^{t_i}e_{\textit{it}}\lambda _{\textit{it}}^{\text{ RE }}\). Using this and Eq.  11.5, we find that score functions for the \(\beta \)’s take the form

$$\begin{aligned} \nonumber \frac{\partial l}{\partial \beta _0^{\text{ RE }}}&= \sum _{i=1}^N \left[ \sum _{t=1}^{t_i} y_{\textit{it}} + \frac{L^{(y_{i,\text{ tot }}+1)}(\Lambda _i^{\text{ RE }})}{L^{(y_{i,\text{ tot }})}(\Lambda _i^{\text{ RE }})} \frac{\partial \Lambda _i^{\text{ RE }}}{\partial \beta _0^{\text{ RE }}} \right] \\[0.2cm]&= \sum _{i=1}^N \sum _{t=1}^{t_i} y_{\textit{it}} - \sum _{i=1}^N \sum _{t=1}^{t_i} \hat{\theta }_i e_{\textit{it}}\lambda _{\textit{it}}^{\text{ RE }} \nonumber \end{aligned}$$

and

$$\begin{aligned} \nonumber \frac{\partial l}{\partial {\beta }^{\text{ RE }}}&= \sum _{i=1}^N \left[ \sum _{t=1}^{t_i} y_{\textit{it}}{\varvec{x}}_{\textit{it}} + \frac{L^{(y_{i,\text{ tot }}+1)}(\Lambda _i^{\text{ RE }})}{L^{(y_{i,\text{ tot }})}(\Lambda _i^{\text{ RE }})} \frac{\partial \Lambda _i^{\text{ RE }}}{\partial {\beta }^{\text{ RE }}} \right] \\[0.2cm]&= \sum _{i=1}^N \sum _{t=1}^{t_i} y_{\textit{it}} {\varvec{x}}_{\textit{it}}- \sum _{i=1}^N \sum _{t=1}^{t_i} \hat{\theta }_i e_{\textit{it}}\lambda _{\textit{it}}^{\text{ RE }}{\varvec{x}}_{\textit{it}}. \nonumber \end{aligned}$$

The maximum likelihood estimates are obtained by setting the score functions equal to zero. From this and Eq. 11.8 the relations in Eq. 11.9 follow.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Günther, CC., Tvete, I.F., Aas, K., Hagen, J.A., Kvifte, L., Borgan, Ø. (2014). Predicting Future Claims Among High Risk Policyholders Using Random Effects. In: Silvestrov, D., Martin-Löf, A. (eds) Modern Problems in Insurance Mathematics. EAA Series. Springer, Cham. https://doi.org/10.1007/978-3-319-06653-0_11

Download citation

Publish with us

Policies and ethics