Skip to main content

The Parareal in Time Algorithm Applied to the Kinetic Neutron Diffusion Equation

  • Conference paper
  • First Online:
Book cover Domain Decomposition Methods in Science and Engineering XXI

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 98))

Abstract

The parareal in time algorithm is a time domain decomposition method for the approximation of transient problems. Its implementation in a parallel fashion allows for significant speed-ups in the computing time and opens the door to long time computations that involve accurate propagators. In this work, we first propose to overview the different strategies for the parallelization of the algorithm. We will then study the speed-up provided by parareal on a concrete example: the kinetic neutron diffusion equation in a nuclear reactor core. Implementations have been carried out with the MINOS solver, which is a tool developed at CEA in the framework of the APOLLO3Ⓡproject. As a conclusion, we will discuss the possibility of using neutron diffusion as a coarse propagator for neutron transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aubanel, E.: Scheduling of tasks in the parareal algorithm. Parallel Comput. 37, 172–182 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baffico, L., Bernard, S., Maday, Y., Turinici, G., Zérah, G.: Parallel-in-time molecular-dynamics simulations. Phys. Rev. E 66, 057701 (2002)

    Article  Google Scholar 

  3. Bal, G., Maday, Y.: A “parareal” time discretization for non-linear PDE’s with application to the pricing of an American put. In: Recent Developments in Domain Decomposition Methods, vol. 23, pp. 189–202. Springer, Berlin (2002)

    Google Scholar 

  4. Baudron, A.M., Lautard, J.J.: A simplified P n solver for core calculation. Nucl. Sci. Eng. 155, 250–263 (2007)

    Google Scholar 

  5. Baudron, A.M., Lautard, J.J., Riahi, K., Maday, Y., Salomon, J.: Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model (submitted)

    Google Scholar 

  6. Dautray, R., Lions, J.L.: Analyse mathématique et calcul numérique. Masson, Cambridge (1984)

    Google Scholar 

  7. Jamelot, E., Baudron, A.M., Lautard, J.J.: Domain decomposition for the SPN solver MINOS. Transp. Theory Stat. Phys. 41(7), 495–512 (2012)

    Article  MATH  Google Scholar 

  8. Langenbuch, S., Maurer, W., Werner, W.: Coarse-mesh flux expansion method for the analysis of space-time effects in large light water reactor cores. Nucl. Sci. Eng. 63, 437–456 (1977)

    Google Scholar 

  9. Lions, J., Maday, Y., Turinici, G.: Résolution d’EDP par un schéma en temps pararéel. C. R. Acad. Sci. Paris Série I 332, 661–668 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Reuss, P.: Précis de neutronique. EDP Sciences, Collection Génie Atomique (2003)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the joint research program MANON between CEA-Saclay and University Pierre et Marie Curie-Paris 6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Mula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Baudron, AM., Lautard, JJ., Maday, Y., Mula, O. (2014). The Parareal in Time Algorithm Applied to the Kinetic Neutron Diffusion Equation. In: Erhel, J., Gander, M., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds) Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-319-05789-7_41

Download citation

Publish with us

Policies and ethics