Skip to main content

Real-Time Near-Optimal Feedback Control of Aggressive Vehicle Maneuvers

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 455))

Abstract

Optimal control theory Patrick J. can be used to generate aggressive maneuvers for vehicles under a variety of conditions using minimal assumptions. Although optimal control provides a very powerful framework for generating aggressive maneuvers utilizing fully nonlinear vehicle and tire models, its use in practice is hindered by the lack of guarantees of convergence, and by the typically long time to generate a solution, which makes this approach unsuitable for real-time implementation unless the problem obeys certain convexity and/or linearity properties. In this chapter, we investigate the use of statistical interpolation (e.g., kriging) in order to synthesize on-the-fly near-optimal feedback control laws from pre-computed optimal solutions. We apply this methodology to the challenging scenario of generating a minimum-time yaw rotation maneuver of a speeding vehicle in order to change its posture prior to a collision with another vehicle, in an effort to remedy the effects of a head-on collision. It is shown that this approach offers a potentially appealing option for real-time, near-optimal, robust trajectory generation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A stationary covariance process has constant mean and variance and the covariance matrix depends only on the distance between the corresponding inputs.

References

  1. Adams J (2012) An interpolation approach to optimal trajectory planning for helicopter unmanned aerial vehicles. Master’s thesis, Naval Postgraduate School

    Google Scholar 

  2. Assadian F, Hancock M (2005) A comparison of yaw stability control strategies for the active differential. In: Proceedings of IEEE international symposium on industrial electronics ISIE 2005, vol 1, pp 373–378. doi:10.1109/ISIE.2005.1528939

  3. Becerra VM (2011) PSOPT optimal control solver user manual

    Google Scholar 

  4. Betts JT (1998) Survey of numerical methods for trajectory optimization. AIAA J Guidance Control Dyn 21(2):193–207

    Article  MATH  Google Scholar 

  5. Betts JT, Huffman WP (1997) Sparse optimal control software SOCS. Mathematics and engineering analysis technical document mealr-085, Boeing Information and Support Services, The Boeing Company, Seattle

    Google Scholar 

  6. Chakraborty I, Tsiotras P (2011) Mitigation of unavoidable T-bone colisions at intersections through aggressive maneuvering. In: Proceedings of the 50th IEEE conference on decision and control and European control conference, Orlando, FL, pp 3264–3269. doi:10.1109/CDC.2011.6161241

  7. Chakraborty I, Tsiotras P, Diaz RS (2013) Time-optimal vehicle posture control to mitigate unavoidable collisions using conventional control inputs. In: American control conference, Washington, DC, pp 2165–2170

    Google Scholar 

  8. Cressie N (1990) The origins of kriging. Math Geol 22(3):239–252

    Article  MATH  MathSciNet  Google Scholar 

  9. Dever C, Mettler B, Feron E, Popovic J, McConley M (2006) Nonlinear trajectory generation for autonomous vehicles via parameterized maneuver classes. J Guidance Control Dyn 29(2):289–302

    Article  Google Scholar 

  10. del Re L, Allgöwer FF, Glielmo L, Guardiola C, Kolmanovsky I (2010) Automotive model predictive control: models, methods and applications. Lecture notes in control and information sciences. Springer, Berlin

    Google Scholar 

  11. Di Cairano S, Tseng HE (2010) Driver-assist steering by active front steering and differential braking: design, implementation and experimental evaluation of a switched model predictive control approach. In: Proceedings of 49th IEEE conference on decision and control, pp 2886–2891. doi:10.1109/CDC.2010.5716954

  12. Doe R (2012) European new car assessment programme, Results (www.euroncap.com), Brussels Belgium

  13. Fildes B, Lane J, Lenard J, Vulvan A (1994) Passenger cars and ocupant injury: side impact crashes. Monash University, Accident Research Center, Report No. 134, Canberra, Australia

    Google Scholar 

  14. Ghosh P, Conway B (2012) Near-optimal feedback strategies for optimal control and pursuit-evasion games: a spatial statistical approach. In: AIAA/AAS astrodynamics specialist conference, Minneapolis, MN, AIAA Paper 2012–4590. doi:10.2514/6.2012-4590

  15. Goldberger A (1962) Best linear unbiased prediction in the generalized linear regression model. J Am Stat Assoc 57(298):369–375

    Article  MATH  MathSciNet  Google Scholar 

  16. Handcock MS, Stein ML (1993) A Bayesian analysis of kriging. Technometrics 35(4):403–410

    Article  Google Scholar 

  17. Hargraves CR, Paris SW (1987) Direct tracjectory optimization using nonlinear programming and collocation. AIAA J Guidance Control Dyn 10(4):338–342

    Article  MATH  Google Scholar 

  18. Huang D, Allen T, Notz W, Miller R (2006) Sequential kriging optimization using multiple-fidelity evaluations. Struct Multi Optim 32(5):369–382

    Article  Google Scholar 

  19. Jazar RN (2008) Vehicle dynamics: theory and application. Springer, New York

    Book  Google Scholar 

  20. Kleijnen J (2009) Kriging metamodeling in simulation: a review. Eur J Oper Res 192(3):707–716

    Article  MATH  MathSciNet  Google Scholar 

  21. Lophaven SN, Nielsen HB, Søndergaard J (2002) DACE: a MATLAB kriging toolbox, Technical report, Technical University of Denmark

    Google Scholar 

  22. MacKay DJC (1998) Introduction to Gaussian processes. NATO ASI Ser F Comput Syst Sci 168:133–166

    Google Scholar 

  23. Oberle H, Grimm W (1985) BNDSCO: a program for the numerical solution of optimal control problems. English translation of DFVLR-Mitt. 85–05

    Google Scholar 

  24. Pacejka H, Bakker E, Nyborg L (1987) Tyre modelling for use in vehicle dynamics studies. SAE paper 870421

    Google Scholar 

  25. Rao AV, Benson D, Darby CL, Mahon B, Francolin C, Patterson M, Sanders I, Huntington GT (2011) User’s manual for GPOPS version 4.x: a MATLAB software for solving multiple-phase optimal control problems using hp-adaptive pseudospectral methods. http://www.gpops.org/gpopsManual.pdf

  26. Riekert P, Schunck TE (1940) Zür Fahrmechanik des gummibereiften Kraftfahrzeugs. Arch Appl Mech 11(3):210–224

    Google Scholar 

  27. Ross IM (2003) User’s manual for DIDO: a MATLAB application package for solving optimal control problems. NPS technical report MAE-03-005, Naval Postgraduate School, Monterey, CA

    Google Scholar 

  28. Schwartz AL (1996) Theory and implementation of numerical methods based on Runge-Kutta integration for solving optimal control problems. Ph.D. thesis, Berkeley, University of California

    Google Scholar 

  29. Side Impacts: Few second chances. http://www.southafrica.co.za/2011/02/10/side-impacts-few-second-chances/

  30. Simpson T, Martin J, Booker A, Giunta A, Haftka R, Renaud J, Kleijnen J (2005) Use of kriging models to approximate deterministic computer models. AIAA J 43(4):853–863

    Article  Google Scholar 

  31. Tang J, Singh A, Goehausen N, Abbeel P (2010) Parameterized maneuver learning for autonomous helicopter flight. In: 2010 IEEE international conference on robotics and automation (ICRA), IEEE, pp 1142–1148

    Google Scholar 

  32. Simpson TW, Mauery TM, Korte JJ, Mistree F (2001) Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA J 39(12):2233–2241

    Google Scholar 

  33. Van Beers W, Kleijnen J (2004) Kriging interpolation in simulation: a survey. In: Proceedings of the 2004 winter simulation conference, vol 1. IEEE

    Google Scholar 

  34. van Zanten AT (2002) Evolution of electronic control system for improving the vehicle dynamic behavior. In: Advanced vehicle control conference (AVEC), Hiroshima, Japan

    Google Scholar 

  35. Velenis E, Frazzoli E, Tsiotras P (2010) Steady-state cornering equilibria and stabilization for a vehicle during extreme operating conditions. Int J Veh Auton Syst 8(2–4):217–241. doi:10.1504/IJVAS.2010.035797

    Article  Google Scholar 

  36. Velenis E, Katzourakis D, Frazzoli E, Tsiotras P, Happee R (2011) Steady-state drifting stabilization of RWD vehicles. Control Eng Pract 19(11):1363–1376. doi:10.1016/j.conengprac.2011.07.010

    Article  Google Scholar 

  37. Velenis E, Tsiotras P, Lu J (2007) Modeling aggressive maneuvers on loose surfaces: the cases of trail-braking and pendulum-turn. In: European control conference, Kos, Greece, pp 1233–1240

    Google Scholar 

  38. Velenis E, Tsiotras P, Lu J (2008) Optimality properties and driver input parameterization for trail-braking cornering. Eur J Control 14(4):308–320. doi:10.3166/EJC.14.308-320

    Article  MATH  Google Scholar 

  39. Yamamoto M (1991) Active control strategy for improved handling and stability. SAE Trans 100(6):1638–1648

    Google Scholar 

Download references

Acknowledgments

Partial support for the work presented in this chapter has been provided by NSF through award no. CMMI-1234286 and ARO via MURI award no. W911NF-11-1-0046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Tsiotras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tsiotras, P., Diaz, R.S. (2014). Real-Time Near-Optimal Feedback Control of Aggressive Vehicle Maneuvers. In: Waschl, H., Kolmanovsky, I., Steinbuch, M., del Re, L. (eds) Optimization and Optimal Control in Automotive Systems. Lecture Notes in Control and Information Sciences, vol 455. Springer, Cham. https://doi.org/10.1007/978-3-319-05371-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05371-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05370-7

  • Online ISBN: 978-3-319-05371-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics