Skip to main content

Nuclear Magnetic Resonance in the Structural Elucidation of Natural Products

  • Chapter
  • First Online:

Part of the book series: Progress in the Chemistry of Organic Natural Products ((POGRCHEM,volume 100))

Abstract

From its modest beginnings in the 1950s, nuclear magnetic resonance (NMR) spectroscopy has become the premier analytical tool for the determination of structure of organic natural products. Structural elucidation efforts were originally limited to proton NMR and typically required both relatively large quantities of material and considerable time. However, modern NMR spectrometers, with an array of one- and two-dimensional experiments, permit the structures of complex organic molecules to be determined, often in a day, using less than 1 mg of sample. This chapter will prepare natural product chemists to employ modern NMR techniques effectively in the determination of molecular structures. It focuses on the rapid determination of whether an isolated compound is known or new, the information content of various two-dimensional and selective one-dimensional NMR experiments, the use of these experiments in combination and avoiding or overcoming common pitfalls in determining molecular structures, the selection of optimum acquisition parameters and data processing methods and parameters, and the use of computer-assisted structure elucidation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Openshaw HT, Robinson R (1946) Constitution of Strychnine and the Biogenetic Relationship of Strychnine and Quinine. Nature 157:438

    CAS  Google Scholar 

  2. Woodward RB, Cava MP, Ollis WD, Hunger A, Daeniker HU, Schenker K (1954) The Total Synthesis of Strychnine. J Am Chem Soc 76:4749

    CAS  Google Scholar 

  3. Ernst RR, Anderson WA (1966) Application of Fourier Transform Spectroscopy to Magnetic Resonance. Rev Sci Instrum 37:93

    CAS  Google Scholar 

  4. Aue WP, Bartholdi E, Ernst RR (1976) Two-Dimensional Spectroscopy. Application to Nuclear Magnetic Resonance. J Chem Phys 64:2229

    CAS  Google Scholar 

  5. Ernst RR (1992) Nuclear Magnetic Resonance Fourier Transform Spectroscopy (Nobel Prize Lecture). Angew Chem Int Ed 31:805

    Google Scholar 

  6. Silverstein RM, Webster FX, Kiemle D (2005) Spectrometric Identification of Organic Compounds, 7th ed. John Wiley and Sons, Inc., New York

    Google Scholar 

  7. Lambert JB, Gronert S, Shurvell HF, Lightner DA, (2011) Organic Structural Spectroscopy, 2nd ed. Prentice Hall, Upper Saddle River, NJ, USA

    Google Scholar 

  8. Berger S, Braun S (2004) 200 and More NMR Experiments. A Practical Course. Wiley-VCH, Chichester, UK

    Google Scholar 

  9. Lambert JB and Mazzola EP (2004) Nuclear Magnetic Resonance Spectroscopy. An Introduction to Principles, Applications and Experimental Methods, Chapter 7. Pearson Education Inc., Upper Saddle River, NJ, USA

    Google Scholar 

  10. Reynolds WF, Enriquez RG (2002) Choosing the Best Pulse Sequences, Acquisition Parameters, Postacquisition Processing Strategies, and Probes for Natural Product Structure Elucidation by NMR Spectroscopy. J Nat Prod 65:221

    CAS  Google Scholar 

  11. Kwan EE, Huang SG (2008) Structural Elucidation with NMR Spectroscopy: Practical Strategies for Organic Chemists. Eur J Org Chem:2671

    Google Scholar 

  12. Burrow TE, Enriquez RG, Reynolds WF (2009) The Signal/Noise of an HMBC Spectrum Can Depend Dramatically Upon the Choice of Acquisition and Processing Parameters. Magn Reson Chem 47:1086

    CAS  Google Scholar 

  13. McLean S, Perpick-Dumont M, Reynolds WF, Jacobs H, Lachmansing SS (1987) Unambiguous Structural and Nuclear Magnetic Resonance Spectral Characterization of Two Triterpenoids of Maprounea guianensis. Can J Chem 65:2519

    CAS  Google Scholar 

  14. NMRwiki.org/wiki/index.php?title=Databases

    Google Scholar 

  15. Barna JCJ, Laue ED, Mayger MR, Skilling J, Worrall SJP (1987) Exponential Sampling, an Alternative Method for Sampling in Two-Dimensional NMR Experiments. J Magn Reson 73:69

    CAS  Google Scholar 

  16. Gray G (2011) Non-Uniform Sampling and CLEAN Processing in VnmrJ 3.2, Spinsights, Agilent Technologies, Inc., Santa Clara, CA, USA

    Google Scholar 

  17. Schanda P, Kupce E, Brutscher B (2005) SOFAST-HMQC Experiments for Recording Two-Dimensional Heteronuclear Correlation Spectra of Proteins Within a Few Seconds. J Biomol NMR 33:199

    CAS  Google Scholar 

  18. Kupce E, Freeman R (2007) Fast Multidimensional NMR by Polarization Sharing. Magn Reson Chem 45:2

    CAS  Google Scholar 

  19. Farias J (2007) ASAP-HMQC – Quick Multidimensional Spectra. Agilent Application Note 5990-9237EN, Agilent Technologies, Inc., Santa Clara, CA, USA

    Google Scholar 

  20. Pauli GF, Jaki BU, Lankin DC (2005) Quantitative 1H NMR: Development and Potential of a Method for Natural Products Analysis. J Nat Prod 68:133

    CAS  Google Scholar 

  21. Pauli GF, Jaki BU, Lankin DC (2007) A Routine Experimental Protocol for qHNMR Illustrated With Taxol. J Nat Prod 70:589

    CAS  Google Scholar 

  22. www.qnmr.org

  23. Jaki BU, Franzblau SG, Chadwick LR, Lankin DC, Zhang F, Wang Y, Pauli GF (2008) Purity-Activity Relationships of Natural Products: The Case of the Anti-TB Active Ursolic Acid. J Nat Prod 71:1742

    CAS  Google Scholar 

  24. Akoka S, Barantin L, Trierweiler M (1999) Concentration Measurement by Proton NMR Using the ERETIC Method. Anal Chem 71:2554

    CAS  Google Scholar 

  25. Wider G, Dreier L (2006) Measuring Protein Concentrations by NMR Spectroscopy. J Am Chem Soc 128:2571

    CAS  Google Scholar 

  26. Farrant RD, Hollerton JC, Lynn SM, Provera S, Sidebottom PJ, Upton RJ (2010) NMR Quantification Using an Artificial Signal. Magn Reson Chem 48:753

    CAS  Google Scholar 

  27. Crouch R, Russell D (2011) Easy, Precise and Accurate Quantitative NMR. Agilent Application Note 5990-7601EN, Agilent Technologies, Inc., Santa Clara, CA, USA

    Google Scholar 

  28. Shoolery JN (1984) Recent Developments in 13C- and Proton NMR. J Nat Prod 47:226

    CAS  Google Scholar 

  29. Wynants C, Hallenga K, Van Binst G, Michel A, Zanin J (1984) Assignment of Amino Acids in Proteins by Correlation of α-Hydrogen and Carbonyl Carbon-13 Resonances. J Magn Reson 57:93

    CAS  Google Scholar 

  30. Kessler H, Griesenger C, Zarbock J, Loosli HR (1984) Assignment of Carbonyl Carbons and Sequence Analysis in Peptides by Heteronuclear Shift Correlation via Small Coupling Constants with Broadband Decoupling in t1 (COLOC). J Magn Reson 57:331

    CAS  Google Scholar 

  31. Reynolds WF, Enriquez RG, Escobar LI, Lozoya X (1984) Total Assignment of 1H and 13C Spectra of Kauradien-9(11),16-oic Acid with the Aid of Heteronuclear Correlated 2D Spectra Optimized for Geminal and Vicinal 13C-1H Coupling Constants: or What to Do When “INADEQUATE” is Impossible. Can J Chem 62:2421

    CAS  Google Scholar 

  32. Jacobs H, Ramdayal F, Reynolds WF, Mclean S (1986) Guyanin, a Novel Tetranortriterpenoid. Structure Elucidation by 2-D NMR Spectroscopy. Tetrahedron Lett 27:1453

    Google Scholar 

  33. Bax A, Freeman R (1981) Investigation of Complex Networks of Spin-Spin Coupling by Two-Dimensional NMR. J Magn Reson 44:542

    CAS  Google Scholar 

  34. Bax A, Davis DG (1985) MLEV-17-Based Two-Dimensional Homonuclear Magnetization Transfer Spectroscopy. J Magn Reson 65:355

    CAS  Google Scholar 

  35. Bax A, Morris GA, (1981) An Improved Method for Heteronuclear Chemical Shift Correlation by Two-Dimensional NMR. J Magn Reson 42:501

    CAS  Google Scholar 

  36. Bax A (1983) Broadband Homonuclear Decoupling in Heteronuclear Shift Correlation NMR Spectroscopy. J Magn Reson 53:517

    CAS  Google Scholar 

  37. Reynolds WF Hughes DW, Perpick-Dumont M, Enriquez RG (1985) A Pulse Sequence for Establishing Carbon-Carbon Connectivities via Indirect 13C-1H Polarization Transfer Modulated by Vicinal 1H-1H Coupling. J Magn Reson 63:413

    CAS  Google Scholar 

  38. Reynolds, WF, McLean S, Perpick-Dumont M, Enriquez RG (1989) Improved 13C-1H Shift Correlation Spectra for Indirectly Bonded Carbons and Hydrogens: the FLOCK Sequence. Magn Reson Chem 27:162

    CAS  Google Scholar 

  39. Bax A, Subramanian S (1986) Sensitivity-Enhanced Two-Dimensional Heteronuclear Shift Correlation NMR Spectroscopy. J Magn Reson 67:565

    CAS  Google Scholar 

  40. Bodenhausen G, Ruben DJ (1980) Natural Abundance Nitrogen-15 NMR by Enhanced Heteronuclear Spectroscopy. Chem Phys Lett 69:185

    CAS  Google Scholar 

  41. Bax A, Summers MF (1986) 1H and 13C Assignments From Sensitivity-Enhanced Detection of Heteronuclear Multiple-Bond Connectivity by 2D Multiple Quantum NMR. J Am Chem Soc 108:2093

    CAS  Google Scholar 

  42. Lambert JB, Mazzola EP (2004) Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications and Experimental Methods, Chapter 8. Pearson Education, Inc., Upper Saddle River, NJ, USA

    Google Scholar 

  43. Kock M, Kerssebaum, R, Bermel W (2003) A Broadband ADEQUATE Pulse Sequence Using Chirp Pulses. Magn Reson Chem 41:65

    CAS  Google Scholar 

  44. Meyer SW, Kock M (2008) NMR Studies of Phakellins and Isophakellins. J Nat Prod 71:1524

    CAS  Google Scholar 

  45. Cheatham SF, Kline M, Sasaki RR, Blinov KA, Elyashberg ME, Molodtsov SG (2010) Enhanced Automated Structure Elucidation by Inclusion of Two-Bond Specific Data. Magn Reson Chem 48:571

    CAS  Google Scholar 

  46. Martin GE, Hilton BD, Blinov KA (2011) HSQC-ADEQUATE Correlation: a New Paradigm for Establishing a Molecular Skeleton. Magn Reson Chem 49:248

    CAS  Google Scholar 

  47. Zhang F, Bruschweiler R (2004) Indirect Covariance NMR Spectroscopy. J Am Chem Soc 126:13180

    CAS  Google Scholar 

  48. Snyder DA, Bruschweiler R (2009) Generalized Indirect Covariance NMR Formulism for Establishment of Multidimensional Spin Correlations. J Phys Chem A 113:12898

    CAS  Google Scholar 

  49. Martin GE, Hadden CE (2000) Long-Range 1H-15N Heteronuclear Shift Correlation at Natural Abundance. J Nat Prod 63:543

    CAS  Google Scholar 

  50. Martin GE, Williams AJ (2005) Long-Range 1H-15N Heteronuclear Shift Correlation. Ann Rep NMR Spectrosc 55:1

    CAS  Google Scholar 

  51. Martin GE, Hilton BD, Moskau D, Freytag N, Kessler K, Colson K (2010) Long-Range 1H-15N Heteronuclear Shift Correlation Across Wide F1 Spectral Windows. Magn Reson Chem 48:935

    CAS  Google Scholar 

  52. Kline M, Cheatham S (2003) A Robust Method for Determining 1H-15N Long-Range Correlations: 15N Optimized CIGAR-HMBC Experiments. Magn Reson Chem 41:307

    CAS  Google Scholar 

  53. Nicolaou KC and Snyder SA (2005) Chasing Molecules That Were Never There: Misassigned Natural Products and the Role of Chemical Synthesis in Modern Structure Elucidation. Angew Chem Int Ed 44:1012

    CAS  Google Scholar 

  54. Schlegel B, Hartl A, Dahse H-M, Gollmick FA, Grafe U, Dorfelt H, Kappes B (2002) Hexacyclinol, a New Antiproliferative Metabolite of Panus rudis HKI 0254. J Antibiot 55:814

    CAS  Google Scholar 

  55. La Clair JJ (2006) Total Synthesis of Hexacyclinol, 5-epi-Hexacyclinol, and Desoxocyclohexcyclinol Unveil an Antimalarial Motif. Angew Chem Int Ed 45:2769

    Google Scholar 

  56. Rychnovsky SD (2006) Predicting NMR Spectra by Computational Methods: Structure Revision of Hexacyclinol. Org Lett 8:2895

    CAS  Google Scholar 

  57. Porco, Jr JA, Su S, Lei X, Bardhan S, Rychnovsky SD (2006) Total Synthesis and Structure Assignment of (+)-Hexacyclinol. Angew Chem Int Ed 45:5790

    CAS  Google Scholar 

  58. Laszlo P (1967) Solvent Effects and Nuclear Magnetic Resonance. Prog NMR Spectrosc 3:231

    Google Scholar 

  59. Hansen PE (1981) Carbon-Hydrogen Spin-Spin Coupling Constants. Prog NMR Spectrosc 14:175

    Google Scholar 

  60. Tinto WF, Reynolds WF (unpublished results)

    Google Scholar 

  61. D’Armas HT, Mootoo BS, Reynolds WF (2000) An Unusual Sesquiterpene Derivative from the Caribbean Gorgonian, Pseudopterogorgia rigida. J Nat Prod 63:1593

    Google Scholar 

  62. Elyashberg ME, Blinov KA, Williams AJ, Molodtsov SG, Martin GE, Martirosian ER (2004) Structure Elucidator: A Versatile Expert System for Molecular Structure Elucidation from 1D and 2D NMR Data and Molecular Fragments. J Chem Inf Comput Sci 44:771

    CAS  Google Scholar 

  63. Blinov KA, Carlson D, Elyashberg, ME, Martin GE, Martirosian ER, Molodtsov S, Williams AJ (2003) Computer-Assisted Structure Elucidation of Natural Products with Limited 2D NMR Data: Application of the StructEluc System. Magn Reson Chem 41:359

    CAS  Google Scholar 

  64. Karplus M (1963) Vicinal Proton Coupling in Nuclear Magnetic Resonance. J Am Chem Soc 85:2870

    CAS  Google Scholar 

  65. Neuhaus D, Williamson MP (2000) The Nuclear Overhauser Effect in Structural and Conformational Analysis, 2nd Edition. Wiley, New York

    Google Scholar 

  66. Haasnoot CAG, DeLeeuw FAAM, Altona C (1980) The Relationship Between Proton-Proton NMR Coupling Constants and Substituent Electronegativities–I: An Empirical Generalization of the Karplus Equation. Tetrahedron 36:2783

    CAS  Google Scholar 

  67. Musher JI, Corey, EJ (1962) Virtual Long-Range Spin-Spin Couplings in NMR: The Linear 3-Spin System and Qualitative Implications of Higher Systems. Tetrahedron 18:791

    CAS  Google Scholar 

  68. Leon I, Enriquez RG, McLean S, Reynolds WF, Yu M (1998) Isolation and Identification by 2D NMR of Two New Complex Saponins from Michrosechium helleri. Magn Reson Chem 36:S111

    CAS  Google Scholar 

  69. Powder-George Y, Frank J, Ramsewak RS, Reynolds WF (2012) The Use of Coupled HSQC Spectra to Aid in Stereochemical Assignment of Molecules with Severe Proton Spectral Overlap. Phytochem Anal 23:274

    CAS  Google Scholar 

  70. Mazzola EP, Parkinson A, Kennelly EJ, Coxon B, Einbond LS, Freedberg DI (2011) Utility of Coupled-HSQC Experiments in the Intact Structural Elucidation of Three Complex Saponins from Blighia sapida. Carbohydr Res 346:759

    CAS  Google Scholar 

  71. Turner JJ, Shephard N (1959) High-Resolution Nuclear-Magnetic-Resonance Spectra of Hydrocarbon Groupings. II. Internal Rotation in Substituted Ethanes and Cyclic Ethers. Proc Roy Soc A 252:506

    Google Scholar 

  72. Macura S, Huang Y, Suter D, Ernst RR (1981) Two-Dimensional Chemical Exchange and Cross-Relaxation Spectroscopy of Coupled Nuclear Spins. J Magn Reson 43:259

    CAS  Google Scholar 

  73. Bothner-By AA, Stephens RL, Lee J-M, Warren CD, Jeanloz RW (1984) Structure Determination of a Tetrasaccharide: Transient Nuclear Overhauser Effects in the Rotating Frame. J Am Chem Soc 106:811

    CAS  Google Scholar 

  74. Stott K, Stonehouse J, Keeler J, Hwang T-L, Shaka AJ (1995) Excitation Sculpting in High-Resolution Nuclear Magnetic Resonance Spectroscopy: Application to Selective NOE Experiments. J Am Chem Soc 117:4199

    CAS  Google Scholar 

  75. Thrippleton MJ, Keeler J (2003) Elimination of Zero-Quantum Interference in Two Dimensional NMR Spectra. Angew Chem Int Ed 42:3938

    CAS  Google Scholar 

  76. Butts CP, Jones CR, Towers EC, Flynn JL, Appleby L, Barron NJ (2011) Interproton Distance Determinations by NOE – Surprising Accuracy and Precision in a Rigid Organic Molecule. Org Biomol Chem. 9:177

    CAS  Google Scholar 

  77. Butts CP, Jones CR, Harvey JN (2011) High Precision NOEs as a Probe for Low Level Conformers – A Second Conformation of Strychnine. Chem Commun 47:1193

    CAS  Google Scholar 

  78. Macura S, Farmer BT, Brown LR (1986) An Improved Method for the Determination of Cross-Relaxation Rates from NOE Data. J Magn Reson 70:493

    CAS  Google Scholar 

  79. Hu H, Krishnamurthy K (2006) Revisiting the Initial Rate Approximation in Kinetic NOE Measurements. J Magn Reson 182:173

    CAS  Google Scholar 

  80. Kummerlowe G, Luy B (2009) Residual Dipolar Couplings for the Configurational and Conformational Analysis of Organic Molecules. Ann Rep NMR Spectrosc 68:193

    Google Scholar 

  81. Gil RR (2011) Constitutional, Configurational, and Conformational Analysis of Small Organic Molecules on the Basis of NMR Residual Dipolar Couplings. Angew Chem Int Ed 50:7222

    CAS  Google Scholar 

  82. Kummerlowe G, Crone B, Kretschmer M, Kirsch SF, Luy B (2011) Residual Dipolar Couplings as a Powerful Tool for Constitutional Analysis: The Unexpected Formation of Tricyclic Compounds. Angew Chem Int Ed 50:2643

    Google Scholar 

  83. Jones CR, Butts CP, Harvey JN (2011) Accuracy in Determining Interproton Distances Using Nuclear Overhauser Effect Data from a Flexible Molecule. Beilstein J Org Chem 7:145

    CAS  Google Scholar 

  84. Dale JA, Mosher HS (1973) Nuclear Magnetic Resonance Enantiomer Reagents. Configurational Correlations via Nuclear Magnetic Resonance Chemical Shifts of Diastereomeric Mandelate, O-Methylmandelate, and α-Methoxy-α-trifluoromethylphenylacetate (MTPA) Esters. J Am Chem Soc 95:512

    CAS  Google Scholar 

  85. Collins DO, Reynolds WF, Reese PB (2004) New Cembranes from Cleome spinosa. J Nat Prod 67:179

    CAS  Google Scholar 

  86. Molina-Salinas GM, Rivas-Galindo VM, Said-Fernandez S, Lankin DC, Munoz MA, Joseph-Nathan P, Pauli GF, Waksman N (2011) Stereochemical Analysis of Leubethanol, an Anti-TB-Active Serrulatane from Leucophyllum frutescens. J Nat Prod 74:1842

    CAS  Google Scholar 

  87. Piozzi F, Passannanti S, Marino ML, Spiro V (1972) Structure of Grandiflorenic Acid. Can J Chem 50:109

    CAS  Google Scholar 

  88. Lederberg J, Sutherland GL, Buchanan BG, Feigenbaum EA, Robertson AV, Duffield AM, Djerassi C (1969) Applications of Artificial Intelligence for Chemical Inference. I. The Number of Possible Organic Compounds. Acyclic Structures Containing C, H, O and N. J Am Chem Soc 91:2973

    CAS  Google Scholar 

  89. Sasaki S-I, Abe H, Ouki T, Sakamoto M, Ochiai S (1968) Automated Structure Elucidation of Several Kinds of Aliphatic and Alicyclic Compounds. Anal Chem 40:2220

    CAS  Google Scholar 

  90. Nelson DB, Munk ME, Gash KB, Herald DL (1969) Alanylactinobicyclone. An Application of Computer Techniques to Structure Elucidation. J Org Chem 34:3800

    CAS  Google Scholar 

  91. Elyashberg ME, Gribov LA (1968) Formal-Logical Model for Interpreting Infrared Spectra From Characteristic Frequencies. J Appl Spectrosc 8:189

    Google Scholar 

  92. Christie BD, Munk ME (1987) The Application of Two-Dimensional Nuclear Magnetic Resonance Spectroscopy in Computer-Assisted Structure Elucidation. Anal Chim Acta 200:347

    CAS  Google Scholar 

  93. Nuzillard J-M, Massiot G (1991) Logic for Structure Determination. Tetrahedron 47:3655

    CAS  Google Scholar 

  94. Peng C, Yuan S, Zheng C, Hui, Y (1994) Efficient Application of 2D Correlation Information in Computer-Assisted Structure Elucidation of Complex Natural Products. J Chem Inf Comput Sci 34:805

    CAS  Google Scholar 

  95. Steinbeck C (1996) LUCY – A Program for Structure Elucidation from NMR Correlation Experiments. Angew Chem Int Ed 35:1984

    CAS  Google Scholar 

  96. Lindel T, Junker J, Koeck M (1999) 2D-NMR-Guided Constitutional Analysis of Organic Compounds Employing the Computer Program COCON. Eur J Org Chem 3:573

    Google Scholar 

  97. Moser A, Elyashberg ME, Williams AJ, Blinov KA, DiMartino JC (2012) Blind Trials of Computer-Assisted Structure Elucidation Software. J Cheminformatics 4:5

    CAS  Google Scholar 

  98. McLean S, Perpick-Dumont M, Reynolds WF, Sawyer JF, Jacobs H, Ramdayal F (1988) Guyanin, a Novel Tetranortriterpenoid: Structural Characterization by 2D NMR Spectroscopy and X-ray Crystallography. J Am Chem Soc 110:5339

    CAS  Google Scholar 

  99. Bamburg JR, Riggs NV, Strong FM (1968) The Structures of Toxins from Two Strains of Fusarium tricinctum. Tetrahedron 24:3329

    CAS  Google Scholar 

  100. Liler M (1971) Studies of Nuclear Magnetic Resonance Chemical Shifts Caused by Protonation. Part II. Formamide and Some N-Alkyl and N,N-Dialkyl Derivatives. J Chem Soc B:334

    Google Scholar 

  101. McClelland RA, Reynolds WF (1974) 13C Nuclear Magnetic Resonance Spectra of N,N-Dimethylformamide in Aqueous Acid Solution. Evidence for Predominant O-Protonation at All Acidities. J Chem Soc Chem Commun:824

    Google Scholar 

  102. Burns D, Reynolds WF, Buchanan G, Reese PB, Enriquez RG (2000) Assignment of 1H and 13C Spectra and Investigation of Hindered Side-Chain Rotation in Lupeol Derivatives. Magn Reson Chem 38:488

    CAS  Google Scholar 

  103. Christian OE, Henry GE, Jacobs H, McLean S, Reynolds WF (2001) Prenylated Benzophenone Derivatives from Clusia havetiodes var. stenocarpa. J Nat Prod 64:23

    CAS  Google Scholar 

  104. Reynolds WF, McLean S, Tay L-L, Yu M, Enriquez RG, Estwick DM, Pascoe KO (1997) Comparison of 13C Resolution and Sensitivity of HSQC and HMQC Sequences and Application of HSQC-Based Sequences to the Total 1H and 13C Spectral Assignment of Clianosterol. Magn Reson Chem 35:455

    CAS  Google Scholar 

  105. Kupce E, Freeman R (1995) Adiabatic Pulses for Wideband Inversion and Broadband Decoupling. J Magn Reson A 115:273

    CAS  Google Scholar 

  106. Wilker W, Leibfritz D, Kerssebaum R, Bermel W (1993) Gradient Selection in Inverse Heteronuclear Correlation Spectroscopy. Magn Reson Chem 31:287

    Google Scholar 

  107. Boyer RD, Johnson R, Krishnamurthy K (2003) Compensation of Refocusing Inefficiency with Synchronized Inversion Sweep (CRISIS) in Multiplicity-Edited HSQC. J Magn Reson 165:253

    CAS  Google Scholar 

  108. Hu H, Krishnamurthy K (2008) Doubly Compensated Multiplicity-Edited HSQC Experiments Utilizing Broadband Inversion Pulses. Magn Reson Chem 46:683

    CAS  Google Scholar 

  109. Reynolds WF, McLean S, Jacobs H, Harding WW (1999) Assignment of 1H and 13C Spectra for Polyprenol-12, a Molecule With Severe 1H and 13C Spectral Crowding, With the Aid of High-Resolution, 13C-Detected, 13C-1H Shift Correlation Spectra. Can J Chem 77:1922

    CAS  Google Scholar 

  110. Schoefberger W, Schlagnitweit J, Müller N (2011) Recent Developments in Heteronuclear Multiple-Bond Correlation Experiments. Ann Rep NMR Spectrosc 72:1

    CAS  Google Scholar 

  111. Furrer J (2011) Recent Developments in HMBC Studies. Ann Rep NMR Spectrosc 74:293

    CAS  Google Scholar 

  112. Hadden CE (2005) Adiabatic Pulses in 1H-15N Direct and Long-Range Heteronuclear Correlations. Magn Reson Chem 43:330

    CAS  Google Scholar 

  113. Nyberg NT, Duus JO, Sorensen OW (2005) Heteronuclear Two-Bond Correlation: Suppressing Heteronuclear Three-Bond or Higher NMR Correlations while Enhancing Two-Bond Correlations Even for Vanishing 2 J CH. J Am Chem Soc 127:6154

    CAS  Google Scholar 

  114. Wagner R, Berger S (1998) ACCORD-HMBC: a Superior Technique for Structure Elucidation. Magn Reson Chem 36:S44

    CAS  Google Scholar 

  115. Hadden CE, Martin GE, Krishnamurthy VV (2000) Constant Time Inverse-Detection Gradient Accordion Rescaled Heteronuclear Multiple Bond Correlation Spectroscopy: CIGAR-HMBC. Magn Reson Chem 38:143

    CAS  Google Scholar 

  116. Furrer J (2010) A Robust, Sensitive and Versatile HMBC Experiment for Rapid Structure Elucidation by NMR: IMPACT-HMBC. Chem Commun 46:3396

    CAS  Google Scholar 

  117. Hansen DF, Kay LE (2007) Improved Magnetization Alignment Schemes for Spin-Lock Relaxation Experiments. J Biomol NMR 37:245

    CAS  Google Scholar 

  118. Exarchou V, Krucker M, van Beek TA, Vervoort J, Gerothanassis IP, Albert K (2005) LC-NMR Coupling Technology: Recent Advancements and Applications in Natural Products Analysis. Magn Reson Chem 43:681

    CAS  Google Scholar 

  119. Tang H, Xiao C, Wang Y (2009) Important Roles of the Hyphenated HPLC-DAD-MS-SPE-NMR Technique in Metabonomics. Magn Reson Chem 47:S157

    CAS  Google Scholar 

  120. Martin GE (2005) Small-Volume and High-Sensitivity NMR Probes. Ann Rep NMR Spectrosc 56:1

    CAS  Google Scholar 

  121. Brey WW, Edison AS, Nast RE, Rocca JR, Saha S, Withers RS (2006) Design, Construction, and Validation of a 1-mm Triple Resonance High-Temperature-Superconducting Probe for NMR. J Magn Reson 179:290

    CAS  Google Scholar 

  122. Dalisay DS, Rogers EW, Edison AS, Molinski TF (2009) Structure Elucidation at the Nanomole Scale. 1. Trisoxazole Macrolides and Thiazole-Containing Cyclic Peptides from the Nudibranch Hexabranchus sanguineus. J Nat Prod 72:732

    CAS  Google Scholar 

  123. Schroeder FC, Gronquist M (2006) Extending the Scope of NMR Spectroscopy with Microcoil Probes. Ang Chem Int Ed 45:7122

    CAS  Google Scholar 

  124. Lambert M, Wolfender J-L, Staerk D, Christensen S B, Hostettmann K, Jaroszewski JW (2007) Identification of Natural Products Using HPLC-SPE Combined with CapNMR. Anal Chem 79:727

    CAS  Google Scholar 

  125. Patt SL, Shoolery JN (1982) Attached Proton Test for Carbon-13 NMR. J Magn Reson 46:535

    CAS  Google Scholar 

  126. Doddrell, DM, Pegg DT, Bendall MR (1982) Distortionless Enhancement of NMR Signals by Polarization Transfer. J Magn Reson 48:323

    CAS  Google Scholar 

  127. Burger R, Bigler P (1998) DEPTQ: Distortionless Enhancement by Polarization Transfer Including the Detection of Quaternary Nuclei. J Magn Reson 135:529

    CAS  Google Scholar 

  128. Bax A, Marion D (1988) Improved Resolution and Sensitivity in 1H-Detected Heteronuclear Multiple-Bond Correlation Spectroscopy. J Magn Reson 78:186

    CAS  Google Scholar 

  129. Keeler J (2010) Understanding NMR Spectroscopy, 2nd Edition. Wiley, Chichester, UK

    Google Scholar 

  130. Hoch JC, Stern AS (1996) NMR Data Processing. Wiley-Liss, New York

    Google Scholar 

  131. Reynolds WF, Yu M, Enriquez RG, Leon I (1997) Investigation of the Advantages and Limitations of Forward Linear Prediction for Processing 2D Data Sets. Magn Reson Chem 35:505

    CAS  Google Scholar 

  132. Reynolds WF, Enriquez RG (2003) The Advantages of Forward Linear Prediction Over Multiple Aliasing for Obtaining High-Resolution HSQC Spectra in Systems With Extreme Spectral Crowding. Magn Reson Chem 41:927

    CAS  Google Scholar 

  133. Freeman R (1998) Shaped Radiofrequency Pulses in High Resolution NMR. Prog NMR Spectrosc 32:59

    CAS  Google Scholar 

Download references

Acknowledgment

The authors are indebted to Arvin Moser of Advanced Chemistry Development, Inc. for the expert analysis of 1- and 2-dimensional NMR spectral data of three natural products in the ACD/Labs Structure Elucidator program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William F. Reynolds .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reynolds, W.F., Mazzola, E.P. (2015). Nuclear Magnetic Resonance in the Structural Elucidation of Natural Products. In: Kinghorn, A., Falk, H., Kobayashi, J. (eds) Progress in the Chemistry of Organic Natural Products 100. Progress in the Chemistry of Organic Natural Products, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-05275-5_3

Download citation

Publish with us

Policies and ethics