Skip to main content

Stochastic Analysis for Poisson Processes

  • Chapter
  • First Online:
Stochastic Analysis for Poisson Point Processes

Part of the book series: Bocconi & Springer Series ((BS,volume 7))

Abstract

This chapter develops some basic theory for the stochastic analysis of Poisson process on a general σ-finite measure space. After giving some fundamental definitions and properties (as the multivariate Mecke equation) the chapter presents the Fock space representation of square-integrable functions of a Poisson process in terms of iterated difference operators. This is followed by the introduction of multivariate stochastic Wiener–Itô integrals and the discussion of their basic properties. The chapter then proceeds with proving the chaos expansion of square-integrable Poisson functionals, and defining and discussing Malliavin operators. Further topics are products of Wiener–Itô integrals and Mehler’s formula for the inverse of the Ornstein–Uhlenbeck generator based on a dynamic thinning procedure. The chapter concludes with covariance identities, the Poincaré inequality, and the FKG-inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dellacherie, C., Meyer, P.A.: Probabilities and Potential. North-Holland Mathematics Studies, vol. 29. North-Holland Publishing Company, Amsterdam/New York (1978)

    Google Scholar 

  2. Dudley, R.M.: Real Analysis and Probability. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  3. Hitsuda, M.: Formula for Brownian partial derivatives. In: Proceedings of the 2nd Japan-USSR Symposium on Probability Theory, pp. 111–114 (1972)

    Google Scholar 

  4. Houdré, C., Perez-Abreu, V.: Covariance identities and inequalities for functionals on Wiener space and Poisson space. Ann. Probab. 23, 400–419 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Houdré, C., Privault, N.: Concentration and deviation inequalities in infinite dimensions via covariance representations. Bernoulli 8, 697–720 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Itô, K.: Multiple Wiener integral. J. Math. Soc. Jpn. 3, 157–169 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  7. Itô, K.: Spectral type of the shift transformation of differential processes with stationary increments. Trans. Am. Math. Soc. 81, 253–263 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ito, Y.: Generalized Poisson functionals. Probab. Theory Relat. Fields 77, 1–28 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Janson, S.: Bounds on the distributions of extremal values of a scanning process. Stoch. Process. Appl. 18, 313–328 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kabanov, Y.M.: On extended stochastic integrals. Theory Probab. Appl. 20, 710–722 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kabanov, Y.M., Skorokhod, A.V.: Extended stochastic integrals. In: Proceedings of the School-Seminar on the Theory of Random Processes, Druskininkai, 25–30 November 1974. Part I. Vilnius (Russian) (1975)

    Google Scholar 

  12. Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, New York (2002)

    Book  MATH  Google Scholar 

  13. Last, G., Penrose, M.D.: Fock space representation, chaos expansion and covariance inequalities for general Poisson processes. Probab. Theory Relat. Fields 150, 663–690 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Last, G., Penrose, M.D.: Martingale representation for Poisson processes with applications to minimal variance hedging. Stoch. Process. Appl. 121, 1588–1606 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Last, G., Penrose, M.D.: Lectures on the Poisson Process. Cambridge University Press www.math.kit.edu/stoch/~cost/seite/lehrbuch_poissonlde (2016)

  16. Last, G., Penrose, M.D., Schulte, M., Thäle, C.: Moments and central limit theorems for some multivariate Poisson functionals. Adv. Appl. Probab. 46, 348–364 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Last, G., Peccati, G., Schulte, M.: Normal approximation on Poisson spaces: Mehler’s formula, second order Poincaré inequalities and stabilization. Probab. Theory Relat. Fields (2014, to appear)

    Google Scholar 

  18. Mecke, J.: Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen. Z. Wahrscheinlichkeitstheor. Verwandte Geb. 9, 36–58 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nualart, D.: The Malliavin Calculus and Related Topics. Springer, Berlin (2006)

    MATH  Google Scholar 

  20. Nualart, D., Vives, J.: Anticipative calculus for the Poisson process based on the Fock space. Séminaire Probabilités XXIV. Lecture Notes in Mathematics, vol. 1426, pp. 154–165. Springer, Berlin (1990)

    Google Scholar 

  21. Peccati, G., Taqqu, M.S.: Wiener Chaos: Moments, Cumulants and Diagrams. Bocconi & Springer Series, vol. 1, Springer, Milan (2011)

    Google Scholar 

  22. Peccati, G., Thäle, C.: Gamma limits and U-statistics on the Poisson space. ALEA Lat. Am. J. Probab. Math. Stat. 10, 525–560 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Picard, J.: On the existence of smooth densities for jump processes. Probab. Theory Relat. Fields 105, 481–511 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Privault, N.: Stochastic Analysis in Discrete and Continuous Settings with Normal Martingales. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  25. Privault, N.: Combinatorics of Poisson Stochastic Integrals with Random Integrands. In: Peccati, G., Reitzner, M. (eds.) Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener-Ito Chaos Expansions and Stochastic Geometry. Bocconi & Springer Series, vol. 7, pp. 37–80. Springer, Cham (2016)

    Google Scholar 

  26. Skorohod, A.V.: On a generalization of a stochastic integral. Theory Probab. Appl. 20, 219–233 (1975)

    Article  MathSciNet  Google Scholar 

  27. Stroock, D.W.: Homogeneous chaos revisited. Séminaire de Probabilités XXI. Lecture Notes in Mathematics, vol. 1247, pp. 1–8. Springer, New York (1987)

    Google Scholar 

  28. Surgailis, D.: On multiple Poisson stochastic integrals and associated Markov semigroups. Probab. Math. Stat. 3, 217–239 (1984)

    MathSciNet  MATH  Google Scholar 

  29. Wiener, N.: The homogeneous chaos. Am. J. Math. 60, 897–936 (1938).

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu, L.: A new modified logarithmic Sobolev inequality for Poisson point processes and several applications. Probab. Theory Relat. Fields 118, 427–438 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The proof of Proposition 5 is joint work with Matthias Schulte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Last .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix we prove Proposition 1. If χ ∈ N is given by

$$ \displaystyle\begin{array}{rcl} \chi =\sum _{ j=1}^{k}\delta _{ x_{j}}& &{}\end{array}$$
(90)

for some \(k \in \mathbb{N}_{0} \cup \{\infty \}\) and some points \(x_{1},x_{2},\ldots \in \mathbb{X}\) (which are not assumed to be distinct) we define, for \(m \in \mathbb{N}\), the factorial measure \(\chi ^{(m)} \in \mathbf{N}(\mathbb{X}^{m})\) by

$$\displaystyle\begin{array}{rcl} \chi ^{(m)}(C) ={{}{\sum } ^{\neq }}_{ i_{1},\ldots,i_{m}\leq k}\mathbb{1}\{(x_{i_{1}},\ldots,x_{i_{m}}) \in C\},\quad C \in \mathcal{X}^{m}.& &{}\end{array}$$
(91)

These measures satisfy the recursion

$$\displaystyle\begin{array}{rcl} \chi ^{(m+1)}& =& \int \bigg[\int\mathbb{1}\{(x_{ 1},\ldots,x_{m+1}) \in \cdot \}\,\chi (\mathrm{d}x_{m+1}) \\ & & -\sum _{j=1}^{m}\mathbb{1}\{(x_{ 1},\ldots,x_{m},x_{j}) \in \cdot \}\bigg]\,\chi ^{(m)}(\mathrm{d}(x_{ 1},\ldots,x_{m})).{}\end{array}$$
(92)

Let N  <  denote the set of all χ ∈ N with \(\chi (\mathbb{X}) <\infty\). For χ ∈ N  <  the recursion (92) is solved by

$$\displaystyle\begin{array}{rcl} \chi ^{(m)} =\idotsint\mathbb{1}\{(x_{ 1},\ldots,x_{m}) \in \cdot \}\,\bigg(\chi -\sum _{j=1}^{m-1}\delta _{ x_{j}}\bigg)(\mathrm{d}x_{m})\cdots \chi (\mathrm{d}x_{1}),& &{}\end{array}$$
(93)

where the integrations are with respect to finite signed measures. Note that χ (m) is a signed measure such that \(\chi ^{(m)}(C) \in \mathbb{Z}\) for all \(C \in \mathcal{X}^{m}\). At this stage it might not be obvious that χ (m)(C) ≥ 0. If, however, χ is given by (90) with \(k \in \mathbb{N}\), then (93) coincides with (91). Hence χ (m) is a measure in this case. For any χ ∈ N  <  we denote by χ (m) the signed measure (93). This is in accordance with the recursion (92). The next lemma shows that χ (m) is a measure.

Lemma 7

Let χ ∈ N <∞ and \(m \in \mathbb{N}\) . Then χ (m) (C) ≥ 0 for all \(C \in \mathcal{X}^{m}\) .

Proof

Let \(B_{1},\ldots,B_{m} \in \mathcal{X}\) and let Π m denote the set of partitions of [m]. The definition (93) implies that

$$\displaystyle\begin{array}{rcl} \chi ^{(m)}(B_{ 1} \times \cdots \times B_{m}) =\sum _{\pi \in \varPi _{m}}c_{\pi }\prod _{J\in \pi }\chi (\cap _{i\in J}B_{i}),& &{}\end{array}$$
(94)

where the coefficients \(c_{\pi } \in \mathbb{R}\) do not depend on B 1, , B m and χ. For instance

$$\displaystyle\begin{array}{rcl} & & \chi ^{(3)}(B_{ 1} \times B_{2} \times B_{3}) =\chi (B_{1})\chi (B_{2})\chi (B_{3}) -\chi (B_{1})\chi (B_{2} \cap B_{3}) {}\\ & & \qquad -\chi (B_{2})\chi (B_{1} \cap B_{3}) -\chi (B_{3})\chi (B_{1} \cap B_{2}) + 2\chi (B_{1} \cap B_{2} \cap B_{3}). {}\\ \end{array}$$

It follows that the left-hand side of (94) is determined by the values of χ on the algebra generated by B 1, , B m . The atoms of this algebra are all nonempty sets of the form

$$\displaystyle{B = B_{1}^{i_{1} } \cap \cdots \cap B_{m}^{i_{m} },}$$

where i 1, , i m  ∈ { 0, 1} and, for \(B \subset \mathbb{X}\), B 1: = B and \(B^{0}:= \mathbb{X}\setminus B\). Let \(\mathcal{A}\) denote the set of all these atoms. For \(B \in \mathcal{A}\) we take x ∈ B and let χ B : = χ(B)δ x . Then the measure

$$\displaystyle{\chi ':=\sum _{B\in \mathcal{A}}\chi _{B}}$$

is a finite sum of Dirac measures and (94) implies that

$$\displaystyle{(\chi ')^{(m)}(B_{ 1} \times \cdots \times B_{m}) =\chi ^{(m)}(B_{ 1} \times \cdots \times B_{m}).}$$

Therefore it follows from (91) (applied to χ′) that χ (m)(B 1 ×⋯ × B m ) ≥ 0.

Let \(\mathcal{A}_{m}\) be the system of all finite and disjoint unions of sets B 1 ×⋯ × B m . This is an algebra; see Proposition 3.2.3 in [2]. From the first step of the proof and additivity of χ (m) we obtain that χ (m)(A) ≥ 0 holds for all \(A \in \mathcal{A}_{m}\). The system \(\mathcal{M}\) of all sets \(A \in \mathcal{X}^{m}\) with the property χ (m)(A) ≥ 0 is monotone. Hence a monotone class theorem (see e.g. Theorem 4.4.2 in [2]) implies that \(\mathcal{M} = \mathcal{X}^{m}\). Therefore χ (m) is nonnegative. □ 

Lemma 8

Let χ,ν ∈ N <∞ and assume that χ ≤ν. Let \(m \in \mathbb{N}\) . Then χ (m) ≤ν (m) .

Proof

By a monotone class argument it suffices to show that

$$\displaystyle\begin{array}{rcl} \chi ^{(m)}(B_{ 1} \times \cdots \times B_{m}) \leq \nu ^{(m)}(B_{ 1} \times \cdots \times B_{m})& &{}\end{array}$$
(95)

for all \(B_{1},\ldots,B_{m} \in \mathcal{X}\). Fixing the latter sets we define the system \(\mathcal{A}\) of atoms of the generated algebra as in the proof of Lemma 7. For \(B \in \mathcal{A}\) we choose x ∈ B and define χ B : = χ(B)δ x and ν B : = ν(B)δ x . Then

$$\displaystyle\begin{array}{rcl} \chi ':=\sum _{B\in \mathcal{A}}\chi _{B},\quad \nu ':=\sum _{B\in \mathcal{A}}\nu _{B}& & {}\\ \end{array}$$

are finite sums of Dirac measures satisfying χ′ ≤ ν′. By (94) we have

$$\displaystyle\begin{array}{rcl} \chi ^{(m)}(B_{ 1} \times \cdots \times B_{m}) = (\chi ')^{(m)}(B_{ 1} \times \cdots \times B_{m}).& & {}\\ \end{array}$$

A similar identity holds for ν (m) and (ν′)(m). Therefore (91) (applied to χ′ and ν′) implies the asserted inequality (95). □ 

We can now prove a slightly more detailed version of Proposition 1.

Proposition 6

For any χ ∈ N σ there is a unique sequence χ (m) , \(m \in \mathbb{N}\) , of symmetric σ-finite measures on \((\mathbb{X}^{m},\mathcal{X}^{m})\) satisfying χ (1) := χ and the recursion (92) . Moreover, the mapping χ ↦ χ (m) is measurable. Finally, χ (m) (B m ) ≤χ(B) m for all \(m \in \mathbb{N}\) and \(B \in \mathcal{X}\) .

Proof

For χ ∈ N  <  the functionals defined by (93) satisfy the recursion (92) and are measures by Lemma 7.

For a general χ ∈ N σ we proceed by induction. For m = 1 we have χ (1) = χ and there is nothing to prove. Assume now that m ≥ 1 and that the measures χ (1), , χ (m) satisfy the first m − 1 recursions and have the properties stated in the proposition. Then (92) enforces the definition

$$\displaystyle\begin{array}{rcl} \chi ^{(m+1)}(C):=\int K(x_{ 1},\ldots,x_{m},\chi,C)\,\chi ^{(m)}(\mathrm{d}(x_{ 1},\ldots,x_{m}))& &{}\end{array}$$
(96)

for \(C \in \mathcal{X}^{m+1}\), where

$$\displaystyle\begin{array}{rcl} & & K(x_{1},\ldots,x_{m},\chi,C) {}\\ & & \quad \:=\int\mathbb{1}\{(x_{1},\ldots,x_{m+1}) \in C\}\,\chi (\mathrm{d}x_{m+1}) -\sum _{j=1}^{m}\mathbb{1}\{(x_{ 1},\ldots,x_{m},x_{j}) \in C\}.{}\\ \end{array}$$

The function \(K: \mathbb{X}^{m} \times \mathbf{N}_{\sigma } \times \mathcal{X}^{m} \rightarrow (-\infty,\infty ]\) is a signed kernel in the following sense. The mapping (x 1, , x m , χ) ↦ K(x 1, , x m , χ, C) is measurable for all \(C \in \mathcal{X}^{m+1}\), while K(x 1, , x m , χ, ⋅ ) is σ-additive for all \((x_{1},\ldots,x_{m},\chi ) \in \mathbb{X}^{m} \times \mathbf{N}_{\sigma }\). Hence it follows from (96) and the measurability properties of χ (m) (which are part of the induction hypothesis) that χ (m+1)(C) is a measurable function of χ.

Next we show that

$$\displaystyle\begin{array}{rcl} K(x_{1},\ldots,x_{m},\chi,C) \geq 0\quad \chi ^{(m)}\mbox{ -a.e. $(x_{ 1},\ldots,x_{m}) \in \mathbb{X}^{m}$}& &{}\end{array}$$
(97)

holds for all χ ∈ N σ and all \(C \in \mathcal{X}^{m+1}\). Since χ (m) is a measure (by induction hypothesis) (96), (97) and monotone convergence then imply that χ (m+1) is a measure. Fix χ ∈ N σ and choose a sequence (χ n ) of finite measures in N σ such that χ n ↑ χ. Lemma 7 (applied to χ n and m + 1) implies that

$$\displaystyle\begin{array}{rcl} K(x_{1},\ldots,x_{m},\chi _{n},C) \geq 0\quad (\chi _{n})^{(m)}\mbox{ -a.e. $(x_{ 1},\ldots,x_{m}) \in \mathbb{X}^{m}$},\,n \in \mathbb{N}.& & {}\\ \end{array}$$

Indeed, we have for all \(B \in \mathcal{X}^{m}\) that

$$\displaystyle\begin{array}{rcl} \int \limits _{B}K(x_{1},\ldots,x_{m},\chi _{n},C)\,(\chi _{n})^{(m)}(\mathrm{d}(x_{ 1},\ldots,x_{m})) = (\chi _{n})^{(m+1)}((B \times \mathbb{X}) \cap C) \geq 0.& & {}\\ \end{array}$$

Since K(x 1, , x m , ⋅ , C) is increasing, this implies

$$\displaystyle\begin{array}{rcl} K(x_{1},\ldots,x_{m},\chi,C) \geq 0\quad (\chi _{n})^{(m)}\mbox{ -a.e. $(x_{ 1},\ldots,x_{m}) \in \mathbb{X}^{m}$},\,n \in \mathbb{N}.& & {}\\ \end{array}$$

By induction hypothesis we have that (χ n )(m) ↑ χ (m) so that (97) follows.

Finally we note that χ (m)(B m) ≤ χ(B)m follows by induction. In particular, χ (m) is σ-finite. To prove the symmetry of χ (m) it is then sufficient to show that the restriction of χ (m) to B m is symmetric, for any \(B \in \mathcal{X}\) with χ(B) < . This fact follows from (94). □ 

For any χ ∈ N, \(B \in \mathcal{X}\) with χ(B) < , and \(m \in \mathbb{N}\) it follows by induction that

$$\displaystyle\begin{array}{rcl} \chi ^{(m)}(B^{m}) =\chi (B)(\chi (B) - 1)\cdots (\chi (B) - m + 1).& & {}\\ \end{array}$$

Since χ and χ (m) are σ-finite, this extends to any \(B \in \mathcal{X}\). In particular χ (m) is the zero measure whenever \(\chi (\mathbb{X}) <m\).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Last, G. (2016). Stochastic Analysis for Poisson Processes. In: Peccati, G., Reitzner, M. (eds) Stochastic Analysis for Poisson Point Processes. Bocconi & Springer Series, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-05233-5_1

Download citation

Publish with us

Policies and ethics