Skip to main content

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 704 Accesses

Abstract

Characterizing the functional behavior of individual proteins in a variety of different contexts is an important step in understanding life at the molecular level. Endeavors such as understanding biological pathways, investigating disease, and developing drugs to cure those diseases depend on being able to describe the actions of individual proteins or genes, both in terms of their physiochemical molecular function, involvement in biological processes, and the subcellular location at which these actions are carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Addou, S., Rentzsch, R., Lee, D., Orengo, C.A.: Domain-based and family-specific sequence identity thresholds increase the levels of reliable protein function transfer. J. Mol. Biol. 387(2), 416–430 (2009)

    Article  Google Scholar 

  2. Aerts, S., Lambrechts, D., Maity, S., Van Loo, P., Coessens, B., De Smet, F., Tranchevent, L.-C., De Moor, B., Marynen, P., Hassan, B., et al.: Gene prioritization through genomic data fusion. Nat. Biotechnol. 24(5), 537–544 (2006)

    Article  Google Scholar 

  3. Alterovitz, G., Michael, X., Hill, D.P., Jane, L., Jonathan, L., Michael, C., Jonathan, D., Chris, M., Harris, M.A., Dolan, M.E., et al.: Ontology engineering. Nat. Biotechnol. 28(2), 128–130 (2010)

    Google Scholar 

  4. Ashburner, M., et al.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000)

    Article  Google Scholar 

  5. Amos, B., Rolf, A., Wu, C.H., Barker, W.C., Brigitte, B., Serenella, F., Elisabeth, G., Hongzhan, H., Rodrigo, L., Michele, M., et al.: The universal protein resource (UniProt). Nucleic Acids Res. 33(1), D154–D159 (2005)

    Google Scholar 

  6. Bandyopadhyay, D., Huan, J., Liu, J., Prins, J., Snoeyink, J., Wang, W., Tropsha, A.: A structure-based function inference using protein family-specific fingerprints. Protein Sci. 15(6), 1537–1543 (2006)

    Article  Google Scholar 

  7. Barutcuoglu, Z., Schapire, R.E., Troyanskaya, O.G.: Hierarchical multi-label prediction of gene function. Bioinformatics 22(7), 830–836 (2006)

    Article  Google Scholar 

  8. Bodenreider, O.: The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 32(Database issue), D267–D270 (2004)

    Google Scholar 

  9. Brown, D., Sjolander, K.: Functional classification using phylogenomic inference. PLoS Comput. Biol. 2(6), e77 (2006)

    Article  Google Scholar 

  10. Clark, W.T., Radivojac, P.: Analysis of protein function and its prediction from amino acid sequence. Proteins Struct. Funct. Bioinf. 79(7), 2086–2096 (2011)

    Article  Google Scholar 

  11. Costello, J.C., Dalkilic, M.M., Beason, S.M., Gehlhausen, J.R., Patwardhan, R., Middha, S., Eads, B.D., Andrews, J.R., et al.: Gene networks in Drosophila melanogaster: integrating experimental data to predict gene function. Genome Biol. 10(9), R97 (2009)

    Google Scholar 

  12. Cozzetto, D., Jones, D.T.: The contribution of intrinsic disorder prediction to the elucidation of protein function. Curr. Opin. Struct. Biol. 23, 467–472 (2013)

    Google Scholar 

  13. Dahdul, W.M., Balhoff, J.P., Blackburn, D.C., Diehl, A.D., Haendel, M.A., Hall, B.K., Lapp, H., Lundberg, J.G., Mungall, C.J., Ringwald, M., et al.: A unified anatomy ontology of the vertebrate skeletal system. PloS One 7(12), e51070 (2012)

    Google Scholar 

  14. Dalkilic, M.M., Costello, J.C., Clark, W.T., Radivojac, P.: From protein-disease associations to disease informatics. Front. Biosci. 13, 3391–3407 (2008)

    Article  Google Scholar 

  15. Deng, M., Zhang, K., Mehta, S., Chen, T., Sun, F.: Prediction of protein function using protein-protein interaction data. J. Comput. Biol. 10(6), 947–960 (2003)

    Article  Google Scholar 

  16. Devos, D., Valencia, A.: Practical limits of function prediction. Proteins 41(1), 98–107 (2000)

    Article  Google Scholar 

  17. Doolittle, R.F.: Of URFS and ORFS: a primer on how to analyze derived amino acid sequences. University Science Books, Mill Valley (1986)

    Google Scholar 

  18. Eisen, J.A.: Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res. 8, 163–167 (1998)

    Article  Google Scholar 

  19. Enault, F., Suhre, K., Claverie, J.-M.: Phydbac “Gene Function Predictor”: a gene annotation tool based on genomic context analusis. BMC Bioinf. 6(257), 247 (2005)

    Google Scholar 

  20. Engelhardt, B.E., Jordan, M.I., Muratore, K.E., Brenner, S.E.: Protein molecular function prediction by Bayesian phylogenomics. PLoS Comput. Biol. 1(5), e45 (2005)

    Article  Google Scholar 

  21. Friedberg, I.: Automated protein function prediction-the genomic challenge. Briefings Bioinf. 7(3), 225–242 (2006)

    Article  Google Scholar 

  22. Gaudet, P., Livstone, M.S., Lewis, S.E., Thomas, P.D.: Phylogenetic-based propagation of functional annotations within the gene ontology consortium. Briefings Bioinf. 12(5), 449–462 (2011)

    Article  Google Scholar 

  23. Guzzi, P.H., et al.: Semantic similarity analysis of protein data: assessment with biological features and issues. Briefings Bioinf. 13(5), 569–585 (2012)

    Article  Google Scholar 

  24. Hamp, T., Kassner, R., Seemayer, S., Vicedo, E., Schaefer, C., Achten, D., Auer, F., Boehm, A., Braun, T., Hecht, M., et al.: Homology-based inference sets the bar high for protein function prediction. BMC Bioinf. 14(Suppl 3), S7 (2013)

    Article  Google Scholar 

  25. Hawkins, T., Luban, S., Kihara, D.: Enhanced automated function prediction using distantly related sequences and contextual association by PFP. Protein Sci. 15(6), 1550–1556 (2006)

    Article  Google Scholar 

  26. Hermann, J.C., Marti-Arbona, R., Fedorov, A.A., Fedorov, E., Almo, S.C., Shoichet, B.K., Raushel, F.M.: Structure-based activity prediction for an enzyme of unknown function. Nature 448(7155), 775–779 (2007)

    Article  Google Scholar 

  27. Huttenhower, C., Hibbs, M., Myers, C., Troyanskaya, O.G.: A scalable method for integration and functional analysis of multiple microarray datasets. Bioinformatics 22(23), 2890–2897 (2006)

    Google Scholar 

  28. Jensen, L.J., Gupta, R., Staerfeldt, H.H., Brunak, S.: Prediction of human protein function according to gene ontology categories. Bioinformatics 19(5), 635–642 (2003)

    Article  Google Scholar 

  29. Jensen, L.J., Gupta, R., Blom, N., Devos, D., Tamames, J., Kesmir, C., Nielsen, H., Stærfeldt, H.H., Rapacki, K., Workman, C., et al.: Prediction of human protein function from post-translational modifications and localization features. J. Mol. Biol. 319(5), 1257–1266 (2002)

    Google Scholar 

  30. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy. In: International Conference on Research in Computational Linguistics, pp. 19–33 (1997)

    Google Scholar 

  31. Jones, C.E., Schwerdt, J., Bretag, T.A., Baumann, U., Brown, A.L.: Gosling: a rule-based protein annotator using blast and go. Bioinformatics 24(22), 2628–2629 (2008)

    Article  Google Scholar 

  32. Kann, M.G.: Protein interactions and disease: computational approaches to uncover the etiology of diseases. Briefings Bioinf. 8(5), 333–346 (2007)

    Google Scholar 

  33. Kourmpetis, Y.A.I., van Dijk, A.D.J., Bink, M.C.A.M., van Ham, R.C.H.J., Ter Braak, C.J.F.: Bayesian Markov random field analysis for protein function prediction based on network data. PloS One 5(2), e9293 (2010)

    Google Scholar 

  34. Kourmpetis, Y.A.I., van Dijk, A.D.J., ter Braak, C.J.F.: Gene ontology consistent protein function prediction: the falcon algorithm applied to six eukaryotic genomes. Algorithms Mol. Biol. 8(1), 10 (2013)

    Google Scholar 

  35. Laskowski, R.A., Thornton, J.M.: Understanding the molecular machinery of genetics through 3D structures. Nat. Rev. Genet. 9(2), 141–151 (2008)

    Article  Google Scholar 

  36. Lee, D., Redfern, O., Orengo, C.: Predicting protein function from sequence and structure. Nat. Rev. Mol. Cell Biol. 8(12), 995–1005 (2007)

    Article  Google Scholar 

  37. Lee, I., Date, S.V., Adai, A.T., Marcotte, E.M.: A probabilistic functional network of yeast genes. Science 306(5701), 1555–1558 (2004)

    Article  Google Scholar 

  38. Letovsky, S., Kasif, S.: Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics 19(Suppl 1), i197–204 (2003)

    Article  Google Scholar 

  39. Lin, D.: An information-theoretic definition of similarity. In: Proceedings of the 15th International Conference on Machine Learning, pp. 296–304. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  40. Liolios, K., Mavromatis, K., Tavernarakis, N., Kyrpides, N.C.: The genomes on line database (gold) in 2007: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res. 36(Database issue), D475–D479 (2008)

    Google Scholar 

  41. Lord, P.W., et al.: Investigating semantic similarity measures across the gene ontology: the relationship between sequence and annotation. Bioinformatics 19(10), 1275–1283 (2003)

    Article  MathSciNet  Google Scholar 

  42. Marcotte, E.M., Pellegrini, M., Ng, H.-L., Rice, D.W., Yeates, T.O., Eisenberg, D.: Detecting protein function and protein-protein interactions from genome sequences. Science 285(5428), 751–753 (1999)

    Google Scholar 

  43. Martin, D.M., et al.: GOtcha: a new method for prediction of protein function assessed by the annotation of seven genomes. BMC Bioinf. 5, 178 (2004)

    Article  Google Scholar 

  44. Minneci, F., Piovesan, D., Cozzetto, D., Jones, D.T.: FFPred 2.0: improved homology-independent prediction of gene ontology terms for eukaryotic protein sequences. PLoS One 8(5), e63754 (2013)

    Google Scholar 

  45. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21(Suppl 1), i302–310 (2005)

    Article  Google Scholar 

  46. (NC-IUBMB) NCotIUoBaMB. Enzyme nomenclature. Academic Press, New York (1992)

    Google Scholar 

  47. Pal, D., Eisenberg, D.: Inference of protein function from protein structure. Structure 13(1), 121–130 (2005)

    Article  Google Scholar 

  48. Pazos, F., Sternberg, M.J.: Automated prediction of protein function and detection of functional sites from structure. Proc. Nat. Acad. Sci. U.S.A. 101(41), 14754–14759 (2004)

    Article  Google Scholar 

  49. Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D., Yeates, T.O.: Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Nat. Acad. Sci. U.S.A. 96(8), 4285–4288 (1999)

    Article  Google Scholar 

  50. Pesquita, C., et al.: Semantic similarity in biomedical ontologies. PLoS Comput. Biol. 5(7), e1000443 (2009)

    Article  MathSciNet  Google Scholar 

  51. Punta, M., Ofran, Y.: The rough guide to in silico function prediction, or how to use sequence and structure information to predict protein function. PLoS Comput. Biol. 4(10), e1000160 (2008)

    Article  Google Scholar 

  52. Rada, R., et al.: Development and application of a metric on semantic nets. IEEE Trans. Syst. Man Cybern. 19(1), 17–30 (1989)

    Article  Google Scholar 

  53. Radivojac, P., Clark, W.T., et al.: A large-scale evaluation of computational protein function prediction. Nat. Methods 10(3), 221–227 (2013)

    Google Scholar 

  54. Remm, M., Storm, C.E., Sonnhammer, E.L.: Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J. Mol. Biol. 314(5), 1041–1052 (2001)

    Article  Google Scholar 

  55. Rentzsch, R., Orengo, C.A.: Protein function prediction-the power of multiplicity. Trends Biotechnol. 27(4), 210–219 (2009)

    Article  Google Scholar 

  56. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, pp. 448–453 (1995)

    Google Scholar 

  57. Resnik, P.: Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. J. Artif. Intell. Res. 11, 95–130 (1999)

    MATH  Google Scholar 

  58. Robinson, P.N., Bauer, S.: Introduction to bio-ontologies. CRC Press, Boca Raton (2011)

    Google Scholar 

  59. Robinson, P.N., Mundlos, S.: The human phenotype ontology. Clin. Genetics 77(6), 525–534 (2010)

    Article  Google Scholar 

  60. Rost, B., Liu, J., Nair, R., Wrzeszczynski, K.O., Ofran, Y.: Automatic prediction of protein function. Cell. Mol. Life Sci. 60(12), 2637–2650 (2003)

    Article  Google Scholar 

  61. Ruepp, A., Zollner, A., Maier, D., Albermann, K., Hani, J., Mokrejs, M., Tetko, I., Guldener, U., Mannhaupt, G., Munsterkotter, M., Mewes, H.W.: The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res. 32(18), 5539–5545 (2004)

    Article  Google Scholar 

  62. Schlicker, A., et al.: A new measure for functional similarity of gene products based on gene ontology. BMC Bioinf. 7, 302 (2006)

    Article  Google Scholar 

  63. Schriml, L.M., Arze, C., Nadendla, S., Chang, Y.-W.W., Mazaitis, M., Felix, V., Feng, G., Kibbe, W.A.: Disease ontology: a backbone for disease semantic integration. Nucleic Acids Res. 40(D1), D940–D946 (2012)

    Google Scholar 

  64. Sharan, R., et al.: Network-based prediction of protein function. Mol. Syst. Biol. 3, 88 (2007)

    Article  Google Scholar 

  65. Škunca, N., Bošnjak, M., Kriško, A., Panov, P., Džeroski, S., Šmuc, T., Supek, F.: Phyletic profiling with cliques of orthologs is enhanced by signatures of paralogy relationships. PLoS Comput. Biol. 1553, 734X (2013)

    Google Scholar 

  66. Sokolov, A., Ben-Hur, A.: Hierarchical classification of gene ontology terms using the Gostruct method. J. Bioinf. Comput. Biol. 8(2), 357–376 (2010)

    Article  Google Scholar 

  67. Tian, W., Skolnick, J.: How well is enzyme function conserved as a function of pairwise sequence identity? J. Mol. Biol. 333(4), 863–882 (2003)

    Article  Google Scholar 

  68. Todd, A.E., Orengo, C.A., Thornton, J.M.: Evolution of function in protein superfamilies, from a structural perspective. J. Mol. Biol. 307(4), 1113–1143 (2001)

    Article  Google Scholar 

  69. Troyanskaya, O.G., Dolinski, K., Owen, A.B., Altman, R.B., Botstein, D.: A bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc. Nat. Acad. Sci. U.S.A. 100(14), 8348–8353 (2003)

    Article  Google Scholar 

  70. Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Global protein function prediction from protein-protein interaction networks. Nat. Biotechnol. 21(6), 697–700 (2003)

    Article  Google Scholar 

  71. Warde-Farley, D., Donaldson, S.L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Grouios, C., Kazi, F., Lopes, CT., et al.: The genemania prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38 (suppl 2), W214–W220 (2010)

    Google Scholar 

  72. Wass, M.N., Sternberg, M.J.: ConFunc-functional annotation in the twilight zone. Bioinformatics 24(6), 798–806 (2008)

    Article  Google Scholar 

  73. Wilson, C.A., Kreychman, J., Gerstein, M.: Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores. J. Mol. Biol. 297(1), 233–249 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wyatt Travis Clark .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Clark, W.T. (2014). Introduction. In: Information-Theoretic Evaluation for Computational Biomedical Ontologies. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-04138-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04138-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04137-7

  • Online ISBN: 978-3-319-04138-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics