Skip to main content

Definition, Extraction, and Validation of Pore Structures in Porous Materials

  • Conference paper
  • First Online:
Topological Methods in Data Analysis and Visualization III

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

An intuitive and sparse representation of the void space of porous materials supports the efficient analysis and visualization of interesting qualitative and quantitative parameters of such materials. We introduce definitions of the elements of this void space, here called pore space, based on its distance function, and present methods to extract these elements using the extremal structures of the distance function. The presented methods are implemented by an image-processing pipeline that determines pore centers, pore paths and pore constrictions. These pore space elements build a graph that represents the topology of the pore space in a compact way. The representations we derive from μCT image data of realistic soil specimens enable the computation of many statistical parameters and, thus, provide a basis for further visual analysis and application-specific developments. We introduced parts of our pipeline in previous work. In this chapter, we present additional details and compare our results with the analytic computation of the pore space elements for a sphere packing in order to show the correctness of our graph computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Al-Raoush, K. Thompson, C.S. Willson, Comparison of network generation techniques for unconsolidated porous media. Soil Sci. Soc. Am. J. 67(6), 1687–1700 (2003)

    Article  Google Scholar 

  2. R. Binner, U. Homberg, S. Prohaska, U. Kalbe, K.J. Witt, Identification of descriptive parameters of the soil pore structure using experiments and CT data, in Proceedings of the 5th International Conference Scour and Erosion (ICSE-5), San Francisco, 2010, pp. 397–407

    Google Scholar 

  3. M.E. Coles, R.D. Hazlett, P. Spanne, W.E. Soll, E.L. Muegge, K.W. Jones, Pore level imaging of fluid transport using synchrotron X-ray microtomography. J. Pet. Sci. Eng. 19(1–2), 55–63 (1998)

    Article  Google Scholar 

  4. H. Edelsbrunner, J. Harer, A. Zomorodian, Hierarchical Morse complexes for piecewise linear 2-manifolds, in Proceedings of the 17th Annual Symposium on Computational Geometry, Medford (ACM, 2001), pp. 70–79

    Google Scholar 

  5. H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification. Discret. Comput. Geom. 28(4), 511–533 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Glantz, Porennetzwerke von Erdstoff-Filtern: mathematisch-morphologische Beschreibung kernspintomographischer Aufnahmen. Ph.D. thesis, University Karlsruhe, Karlsruhe, 1997

    Google Scholar 

  7. R. Glantz, M. Hilpert, Dual models of pore spaces. Adv. Water Resour. 30(2), 227–248 (2007)

    Article  Google Scholar 

  8. A. Gyulassy, M. Duchaineau, V. Natarajan, V. Pascucci, E. Bringa, A. Higginbotham, B. Hamann, Topologically clean distance fields. IEEE Trans. Vis. Comput. Graph. 13(6), 1432–1439 (2007)

    Article  Google Scholar 

  9. M. Hadwiger, L. Fritz, C. Rezk-Salama, T. Höllt, G. Geier, T. Pabel, Interactive volume exploration for feature detection and quantification in industrial CT data. IEEE Trans. Vis. Comput. Graph. 14(6), 1507–1514 (2008)

    Article  Google Scholar 

  10. U. Homberg, D. Baum, S. Prohaska, U. Kalbe, K.J. Witt, Automatic extraction and analysis of realistic pore structures from μCT data for pore space characterization of graded soil, in Proceedings of the 6th International Conference Scour and Erosion (ICSE-6), Paris, 2012, pp. 66–73

    Google Scholar 

  11. U. Homberg, R. Binner, S. Prohaska, V.J. Dercksen, A. Kuß, U. Kalbe, Determining geometric grain structure from X-ray micro-tomograms of gradated soil, in Internal Erosion, ed. by K.J. Witt. Schriftenreihe Geotechnik, Bauhaus-Universität Weimar, vol. 21 (2009), pp. 37–52

    Google Scholar 

  12. M.W. Jones, J.A. Bærentzen, M. Sramek, 3D distance fields: a survey of techniques and applications. IEEE Trans. Vis. Comput. Graph. 12(4), 581–599 (2006)

    Article  Google Scholar 

  13. N. Lindow, D. Baum, H.C. Hege, Voronoi-based extraction and visualization of molecular paths. IEEE Trans. Vis. Comput. Graph. 17(12), 2025–2034 (2011)

    Article  Google Scholar 

  14. W.B. Lindquist, S.M. Lee, D.A. Coker, K.W. Jones, P. Spanne, Medial axis analysis of void structure in three-dimensional tomographic images of porous media. J. Geophys. Res. 101(B4), 8297–8310 (1996)

    Article  Google Scholar 

  15. W.B. Lindquist, A. Venkatarangan, J. Dunsmuir, T. Wong, Pore and throat size distributions measured from synchrotron X-ray tomographic images of fontainebleau sandstones. J. Geophys. Res. 105(B9), 21509–21527 (2000)

    Article  Google Scholar 

  16. A. Pierret, Y. Capowiez, L. Belzunces, C.J. Moran, 3d reconstruction and quantification of macropores using X-ray computed tomography and image analysis. Geoderma 106(3–4), 247–271 (2002)

    Article  Google Scholar 

  17. S. Prohaska, Skeleton-based visualization of massive voxel objects with network-like architecture. Ph.D. thesis, University of Potsdam, 2007

    Google Scholar 

  18. C. Pudney, Distance-ordered homotopic thinning: a skeletonization algorithm for 3d digital images. Comput. Vis. Image Underst. 72(3), 404–413 (1998)

    Article  Google Scholar 

  19. N. Reboul, E. Vincens, B. Cambou, A statistical analysis of void size distribution in a simulated narrowly graded packing of spheres. Granul. Matter 10(6), 457–468 (2008)

    Article  MATH  Google Scholar 

  20. F. Rezanezhad, W.L. Quinton, J.S. Price, D. Elrick, T.R. Elliot, R.J. Heck, Examining the effect of pore size distribution and shape on flow through unsaturated peat using 3-d computed tomography. Hydrol. Earth Syst. Sci. 13(10), 1993–2002 (2009)

    Article  Google Scholar 

  21. J.B.T.M. Roerdink, A. Meijster, The watershed transform: definitions, algorithms and parallelization strategies. Fundam. Inform. 41(1–2), 187–228 (2001)

    MathSciNet  Google Scholar 

  22. D. Silin, T. Patzek, Pore space morphology analysis using maximal inscribed spheres. Phys. A: Stat. Theor. Phys. 371(2), 336–360 (2006)

    Article  Google Scholar 

  23. S.M. Sweeney, C.L. Martin, Pore size distributions calculated from 3-D images of DEM-simulated powder compacts. Acta Mater. 51(12), 3635–3649 (2003)

    Article  Google Scholar 

  24. K.E. Thompson, C.S. Willson, C.D. White, S. Nyman, J.P. Bhattacharya, A.H. Reed, Application of a new grain-based reconstruction algorithm to microtomography images for quantitative characterization and flow modeling. SPE J. 13(2), 164–176 (2008)

    Article  Google Scholar 

  25. D.M. Ushizima, D. Morozov, G.H. Weber, A.G.C. Bianchi, E.W. Bethel, Augmented topological descriptors of pore networks for material science. IEEE Trans. Vis. Comput. Graph. 18(12), 2041–2050 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly funded by the German Research Foundation (DFG) in the project “Conditions of suffosive erosion phenomena in soil”. Special thanks go to Norbert Lindow for providing his implementation of the Voronoi graph algorithm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Homberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Homberg, U., Baum, D., Wiebel, A., Prohaska, S., Hege, HC. (2014). Definition, Extraction, and Validation of Pore Structures in Porous Materials. In: Bremer, PT., Hotz, I., Pascucci, V., Peikert, R. (eds) Topological Methods in Data Analysis and Visualization III. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-04099-8_15

Download citation

Publish with us

Policies and ethics