Skip to main content

Abstract

The scientific goal of HANDS.DVI consists of developing a common framework to programming robotic hands independently from their kinematics, mechanical construction, and sensor equipment complexity. Recent results on the organization of the human hand in grasping and manipulation are the inspiration for this experiment. The reduced set of parameters that we effectively use to control our hands is known in the literature as the set of synergies. The synergistic organization of the human hand is the theoretical foundation of the innovative approach to design a unified framework for robotic hands control. Theoretical tools have been studied to design a suitable mapping function of the control action (decomposed in its elemental action) from a human hand model domain onto the articulated robotic hand co-domain. The developed control framework has been applied on an experimental set up consisting of two robotic hands with dissimilar kinematics grasping an object instrumented with force sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Santello, M., Flanders, M., Soechting, J.: Postural hand synergies for tool use. The Journal of Neuroscience 18, 10105–10115 (1998)

    Google Scholar 

  2. Santello, M., Soechting, J.F.: Force synergies for multifingered grasping. Experimental Brain Research 133, 457–467 (2000)

    Article  Google Scholar 

  3. Lin, J., Wu, T.: Modeling the Constraints of Human Hand Motion. Urbana 51(61), 801 (2000)

    Google Scholar 

  4. Linscheid, R., An, K., Gross, R.: Quantitative analysis of the intrinsic muscles of the hand. Clinical Anatomy 4(4), 265–284 (1991)

    Article  Google Scholar 

  5. Kim, K., Youm, Y., Chung, W.: Human kinematic factor for haptic manipulation: The wrist to thumb. In: Proceedings of the 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS 2002, pp. 319–326 (2002)

    Google Scholar 

  6. Youm, Y., Holden, M., Dohrmann, K.: Finger ray ratio study. Tech. Rep. (1977)

    Google Scholar 

  7. Chao, E.: Biomechanics of the hand: a basic research study. World Scientific Publishing Company (1989)

    Google Scholar 

  8. Gioioso, G., Salvietti, G., Malvezzi, M., Prattichizzo, D.: An object-based approach to map human hand synergies onto robotic hands with dissimilar kinematics. In: Robotics: Science and Systems VIII. The MIT Press, Sidney (2012)

    Google Scholar 

  9. Gioioso, G., Salvietti, G., Malvezzi, M., Prattichizzo, D.: Mapping synergies from human to robotic hands with dissimilar kinematics: an approach in the object domain. IEEE Trans. on Robotics (2013)

    Google Scholar 

  10. Ciocarlie, M., Goldfeder, C., Allen, P.: Dimensionality reduction for hand-independent dexterous robotic grasping. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, pp. 3270–3275 (2007)

    Google Scholar 

  11. Peer, A., Einenkel, S., Buss, M.: Multi-fingered telemanipulation - mapping of a human hand to a three finger gripper. In: The 17th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2008, pp. 465–470 (August 2008)

    Google Scholar 

  12. Butterfass, J., Grebenstein, M., Liu, H., Hirzinger, G.: DLR-hand II: next generation of a dextrous robot hand. In: Proceedings 2001 ICRA IEEE International Conference on Robotics and Automation, vol. 1, pp. 109–114 (2001)

    Google Scholar 

  13. Artoolkit library for Augmented Reality, http://www.hitl.washington.edu/artoolkit/

  14. Kato, H., Billinghurst, M.: Marker Tracking and HMD Calibration for a Video-Based Augmented Reality Conferencing System. In: Proc. IEEE ACM Int. Workshop on Augmented Reality (1999)

    Google Scholar 

  15. Ma, Y., Soatto, S., KoseckĂĄ, J., Sastry, S.: An Invitation to 3-D Vision: From Images to Geometric Models. Interdisciplinary Applied Mathematics. Springer (2003)

    Google Scholar 

  16. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004)

    Google Scholar 

  17. Gabiccini, M., Bicchi, A., Prattichizzo, D., Malvezzi, M.: On the role of hand synergies in the optimal choice of grasping forces. Autonomous Robots 31, 235–252 (2011)

    Article  Google Scholar 

  18. Bicchi, A., Salisbury, J.K., Brock, D.L.: Contact sensing from force measurements. The International Journal of Robotics Research 12(3), 249–262 (1993)

    Article  Google Scholar 

  19. Bicchi, A.: On the closure properties of robotic grasping. The Int. J. of Robotics Research 14(4), 319–334 (1995)

    Article  Google Scholar 

  20. Malvezzi, M., Gioioso, G., Salvietti, G., Prattichizzo, D., Bicchi, A.: Syngrasp: a matlab toolbox for grasp analysis of human and robotic hands. In: Proc. IEEE Int. Conf. on Robotics and Automation (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gionata Salvietti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Š 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Salvietti, G. et al. (2014). HANDS.DVI: A Device-Independent Programming and Control Framework for Robotic Hands. In: Röhrbein, F., Veiga, G., Natale, C. (eds) Gearing Up and Accelerating Cross‐fertilization between Academic and Industrial Robotics Research in Europe:. Springer Tracts in Advanced Robotics, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-319-03838-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03838-4_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03837-7

  • Online ISBN: 978-3-319-03838-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics