Skip to main content

An Innovative Financial Time Series Model: The Geometric Process Model

  • Conference paper
Book cover Modeling Dependence in Econometrics

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 251))

  • 1905 Accesses

Abstract

Geometric Process (GP) model is proposed as an alternative model for financial time series. The model contains two components: the mean of an underlying renewal process and the ratio which measures the direction and strength of the dynamic trend pattern over time. They simultaneously account for the uncertainty on the mean and the autoregressive and time-varying nature of the volatility. Compare to the popular GARCH and SV models, this model is simple and easy to implement using the least squares (LS) method.We extend the GP model to analyze the daily asset price range which exhibit threshold and asymmetric effects for some exogenous variables. Models are selected according to mean square error (MSE). Finally forecasting are performed for the best model that allows for both threshold and asymmetric effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, T., Bollerslev, T.: Answering the skeptics: yes, standard volatility models do provide accurate forecasts. International Economic Review 39, 885–905 (1998)

    Article  Google Scholar 

  2. Bollerslev, T.: Generalized autoregressive conidtional heteroskedasticity. Journal of Econometrics 31, 307–327 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brandt, M.W., Jones, C.S.: Volatility forecasting with range-based EGARCH models. Journal of Business and Economic Statistics 24, 470–486 (2006)

    Article  MathSciNet  Google Scholar 

  4. Chan, J.S.K., Lam, Y., Leung, D.Y.P.: Statistical inference for geometric processes with gamma distributions. Computional Statistics and Data Analysis 47, 565–581 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan, J.S.K., Yu, P.L.H., Lam, Y., Ho, A.P.K.: Modeling SARS data using threshold geometric process. Statistics in Medicine 25, 1826–1839 (2006)

    Article  MathSciNet  Google Scholar 

  6. Chan, J.S.K., Leung, D.Y.P.: A new approach to the modelling longitudinal binary data with trend: the binary geometric process model. Computational Statistics 25, 505–536 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chan, J.S.K., Lam, C.P.Y., Yu, P.L.H., Choy, S.T.B., Chen, C.W.S.: A Bayesian conditional autoregressive geometric process model for range data. Computational Statistics and Data Analysis 56, 3006–3019 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, C.W.S., Gerlach, R.H., Lin, E.M.H.: Forecast volatility from threshold heteroskedastic range models. Computational Statistics and Data Analysis, on Statistical & Computational Methods in Finance 52, 2990–3010 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chou, R.: Forecasting Financial Volatilities With Extreme Values: The Conditional Autoregressive Range (CARR) Model. Journal of Money Credit and Banking 37, 561–582 (2005)

    Article  Google Scholar 

  10. Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50, 987–1008 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feller, W.: Fluctuation theory of recurrent events. Transactions of the American Mathematical Society 67, 98–119 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garman, M.B., Klass, M.J.: On the estimation of price volatility from historical data. Journal of Business 53, 67–78 (1980)

    Article  Google Scholar 

  13. Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice. Chapman and Hall, UK (1996)

    Book  MATH  Google Scholar 

  14. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies 6, 327–343 (1993)

    Article  Google Scholar 

  15. Hull, J.C., White, A.: An analysis of the bias in option pricing caused by by a stochastic volatility. Advances in Futures and Options Research 3, 29–61 (1988)

    Google Scholar 

  16. Lam, Y.: Geometric process and replacement problem. Acta Mathematicae Applicatae Sinica 4, 366–377 (1988)

    Article  MATH  Google Scholar 

  17. Lam, Y.: Nonparametric inference for geometric processes. Commun. Statist. Theory Meth. 21, 2083–2105 (1992)

    Article  MATH  Google Scholar 

  18. Lam, Y., Chan, J.S.K.: Statistical inference for geometric processes with lognormal distribution. Computional Statistics and Data Analysis 27, 99–112 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lam, Y.: The Geometric Process and it’s applications. World Scientific Publishing Co. Pte. Ltd. (2007)

    Google Scholar 

  20. Parkinson, M.: The extreme value method for estimating the variance of the rate of return. Journal of Business 53, 61–65 (1980)

    Article  Google Scholar 

  21. Smith, A.F.M., Roberts, G.O.: Bayesian Computation via the Gibbs Sampler and Related Markov Chain Monte Carlo Methods. Journal of the Royal Statistical Society B 55, 3–23 (1993)

    MathSciNet  MATH  Google Scholar 

  22. Spiegelhalter, D., Thomas, A., Best, N.: Bayesian inference using Gibbs sampling for Window version (2000), The website for WinBUGS is http://www.mrc-bsu.cam.ac/bugs

  23. Spiegelhalter, D., Best, N.G., Carlin, B.P., Van der Linde, A.: Bayesian Measures of Model Complexity and Fit (with Discussion). Journal of the Royal Statistical Society B 64, 583–616 (2002)

    Article  MATH  Google Scholar 

  24. Wan, W.Y., Chan, J.S.K.: A new approach for handling longitudinal count data with zero inflation and overdispersion: Poisson Geometric Process model. Biometrical Journal 51, 556–570 (2009)

    Article  MathSciNet  Google Scholar 

  25. Wan, W.Y., Chan, J.S.K.: Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions. Computational Statistics and Data Analysis 55, 687–702 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer S. K. Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chan, J.S.K., Lam, C.P.Y., Choy, S.T.B. (2014). An Innovative Financial Time Series Model: The Geometric Process Model. In: Huynh, VN., Kreinovich, V., Sriboonchitta, S. (eds) Modeling Dependence in Econometrics. Advances in Intelligent Systems and Computing, vol 251. Springer, Cham. https://doi.org/10.1007/978-3-319-03395-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03395-2_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03394-5

  • Online ISBN: 978-3-319-03395-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics