Skip to main content

Virtual Robotization of the Human Body via Data-Driven Vibrotactile Feedback

  • Conference paper
Advances in Computer Entertainment (ACE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8253))

Abstract

Worlds of science fiction frequently involve robotic heroes composed of metallic parts. Although these characters exist only in the realm of fantasy, many of us would be interested in becoming them, or becoming like them. Therefore, we developed a virtual robotization system that provides a robot-like feeling to the human body not only by using a visual display and sound effects, but also by rendering a robot’s haptic vibration to the user’s arm. The vibrotactile stimulus was recorded using real robot actuation and modeled using linear predictive coding (LPC). We experimentally confirmed that the subjective robot-like feeling was significantly increased by combining the robot-vibration feedback with a robot-joint animation and creaking sound effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. TN Games, FPS Gaming Vest, http://tngames.com/products (last access: August 18, 2013)

  2. Ooshima, S., Hashimoto, Y., Ando, H., Watanabe, J., Kajimoto, H.: Simultaneous Presentation of Tactile and Auditory Motion to the Abdomen to Present the Feeling of Being Slashed. In: Proceedings of the SICE Annual Conference, pp. 467–471 (2008)

    Google Scholar 

  3. McMahan, W., Kuchenbecker, K.J.: Spectral subtraction of robot motion noise for improved event detection in tactile acceleration signals. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012, Part I. LNCS, vol. 7282, pp. 326–337. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Ince, G., Nakadai, K., Rodemann, T., Hasegawa, Y., Tsujino, H., Imura, J.I.: Ego noise suppression of a robot using template subtraction. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 199–204 (2009)

    Google Scholar 

  5. Visell, Y., Law, A., Cooperstock, J.R.: Touch is everywhere: Floor surfaces as ambient haptic interfaces. IEEE Transactions on Haptics 2, 148–159 (2009)

    Article  Google Scholar 

  6. Cirio, G., Marchal, M., L’ecuyer, A., Cooperstock, J.R.: Vibrotactile rendering of splashing fluids. IEEE Transactions on Haptics 6, 117–122 (2012)

    Article  Google Scholar 

  7. Okamura, A.M., Cutkosky, M.R., Dennerlein, J.T.: Reality-based models for vibration feedback in virtual environments. IEEE/ASME Transactions on Mechatronics 6, 245–252 (2001)

    Article  Google Scholar 

  8. Hachisu, T., Sato, M., Fukushima, S., Kajimoto, H.: Augmentation of material property by modulating vibration resulting from tapping. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012, Part I. LNCS, vol. 7282, pp. 173–180. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Romano, J.M., Kuchenbecker, K.J.: Creating realistic virtual textures from contact acceleration data. IEEE Transactions on Haptics 5, 109–119 (2012)

    Article  Google Scholar 

  10. Takeuchi, Y., Kamuro, S., Minamizawa, K., Tachi, S.: Haptic Duplicator. In: Proceedings of the Virtual Reality International Conference, pp. 30:1–30:2 (2012)

    Google Scholar 

  11. Minamizawa, K., Kakehi, Y., Nakatani, M., Mihara, S., Tachi, S.: TECHTILE Toolkit: A prototyping tool for designing haptic media. In: Proceedings of the ACM SIGGRAPH 2012 Emerging Technologies, p. 22 (2012)

    Google Scholar 

  12. Kurihara, Y., Hachisu, T., Sato, M., Fukushima, S., Kajimoto, H.: Virtual alteration of body material by periodic vibrotactile feedback. In: Proceedings of the IEEE Virtual Reality Conference (2013)

    Google Scholar 

  13. Wellman, P., Howe, R.D.: Towards realistic vibrotactile display in virtual environments. In: Proceedings of the ASME Dynamic Systems and Control Division, vol. 57, pp. 713–718 (1995)

    Google Scholar 

  14. Goodwin, G.M., McCloskey, D.I., Matthews, P.B.C.: The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain 95, 705–748 (1972)

    Article  Google Scholar 

  15. Burke, D., Hagbarth, K.E., Löfstedt, L., Wallin, G.: The responses of human muscle spindle endings to vibration of non-contracting muscles. J. Physiol. (Lond.) 261, 673–693 (1976)

    Article  Google Scholar 

  16. Naito, E.: Sensing limb movements in the motor cortex: How humans sense limb movement. Neuroscientist 10, 73–82 (2004)

    Article  Google Scholar 

  17. Lackner, J.R.: Some proprioceptive influences on the perceptual representation of body shape and orientation. Brain 111, 281–297 (1988)

    Article  Google Scholar 

  18. Botvinick, M., Cohen, J.: Rubber hands “feel” touch that eyes see. Nature 391, 756 (1998)

    Article  Google Scholar 

  19. Tsakiris, M.: My body in the brain: A neurocognitive model of body-ownership. Neuropsychologica 48, 703–712 (2010)

    Article  Google Scholar 

  20. Slater, M., Perez-Marcos, D., Ehrsson, H.H., Sanchez-Vives, M.V.: Inducing illusory ownership of virtual body. Frontiers in Neuroscience 3, 214–220 (2009)

    Article  Google Scholar 

  21. Okamura, A.M., Webster, R.J., Nolin, J., Johnson, K.W., Jafry, H.: The haptic scissors: Cutting in virtual environments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 828–833 (2003)

    Google Scholar 

  22. Romano, J.M., Yoshioka, T., Kuchenbecker, K.J.: Automatic filter design for synthesis of haptic textures from recorded acceleration data. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1815–1821 (2010)

    Google Scholar 

  23. Dabrowski, J.R., Munsone, V.: Is 100 milliseconds too fast? In: Proceedings of the ACM Human Factors in Computing Systems (CHI), pp. 317–318 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Kurihara, Y., Hachisu, T., Kuchenbecker, K.J., Kajimoto, H. (2013). Virtual Robotization of the Human Body via Data-Driven Vibrotactile Feedback. In: Reidsma, D., Katayose, H., Nijholt, A. (eds) Advances in Computer Entertainment. ACE 2013. Lecture Notes in Computer Science, vol 8253. Springer, Cham. https://doi.org/10.1007/978-3-319-03161-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03161-3_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03160-6

  • Online ISBN: 978-3-319-03161-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics