Skip to main content

Tasks and Digital Tools

  • Chapter
  • First Online:
Tools and Mathematics

Part of the book series: Mathematics Education Library ((MELI,volume 110))

Abstract

This chapter considers scholastic tasks with digital tools. The first two sections consider tasks in ‘ordinary’ classrooms (tasks for learning) and issues relating to tasks using mathematical software. The first section presents examples of tasks with digital tools to highlight potential problems and opportunities for learning. The second section considers issues arising from the literature on tasks design with and without digital tools. The final section looks at task-tool issues in larger-than-the-individual classroom research and in assessment; it also comments of avenues for further development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is an example of instrumentalisation (see Sect. 10.4.1).

  2. 2.

    This subsection has a similar focus to Chap. 2 but here the focus is on different digital tools.

  3. 3.

    The ZPD is a much deeper construct than this sentence suggests. Abdul Hussain, Monaghan, and Threlfall (2012) discuss complexities in the ZPD.

  4. 4.

    This approach has many similarities to’ instrumentalisation’ (see Sect. 10.4).

  5. 5.

    All three papers were summarised in Sect. 9.3.

  6. 6.

    See Sect. 9.3 or, better still, Chiappini (2012), for details.

  7. 7.

    Earlier in the paper Thomas & Lin refer to the ‘epistemic value of techniques’ . Their reference here to the ‘epistemic value of a task’ can be taken as shorthand for the ‘epistemic value of the techniques required to solve the task’.

  8. 8.

    See the European project MC2 (http://www.mc2-project.eu), focusing on social creativity in the design of digital media intended to enhance creativity in mathematical thinking.

  9. 9.

    Interoperable and Interactive Geometry for Europe http://i2geo.net/xwiki/bin/view/Main/About

References

  • Abboud-Blanchard, M., & Vandebrouck, F. (2012). Analysing Teachers’ Practices in Technology Environments from an Activity Theoretical Approach. International Journal for Technology in Mathematics Education, 19(4), 159–163.

    Google Scholar 

  • Abdul Hussain, M., Monaghan, J., & Threlfall, J. (2012). Teacher-student development in mathematics classrooms: Interrelated zones of free movement and promoted actions. Educational Studies in Mathematics, 82(2), 285–302.

    Article  Google Scholar 

  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245–274.

    Article  Google Scholar 

  • Artigue, M. (2005). The integration of symbolic calculators into secondary education: Some lessons from didactical engineering. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument. New York: Springer.

    Google Scholar 

  • Bokhove, C. (2013). Using crises, feedback and fading for online task design. In C. Margolinas (Ed.), Task Design in Mathematics Education. Proceedings of ICMI Study 22. Oxford. Retrieved from http://hal.archives-ouvertes.fr/docs/00/83/74/88/PDF/ICMI_STudy_22_proceedings_2013-FINAL_V2.pdf

  • Bosch, M., & Chevallard, Y. (1999). La sensibilité de l’activité mathématique aux ostensifs. Objet d’étude et problématique. Recherches en didactique des mathématiques, 19(1), 79–124.

    Google Scholar 

  • Brown, R. G. (2010). Does the introduction of the graphics calculator into system-wide examinations lead to change in the types of mathematical skills tested? Educational Studies in Mathematics, 73(2), 181–203.

    Article  Google Scholar 

  • Chiappini, G. (2012). The transformation of ergonomic affordances into cultural affordances: The case of the Alnuset system. International Journal for Technology in Mathematics Education, 19(4), 135–140.

    Google Scholar 

  • Drijvers, P. (2009). Tools and tests: technology in national final mathematics examinations. In C. Winslow (Ed.), Nordic Research on Mathematics Education, Proceedings from NORMA08 (pp. 225–236). Rotterdam: Sense.

    Google Scholar 

  • Drijvers, P., Boon, P., Doorman, M., Bokhove, C., & Tacoma, S. (2013). RME principles for designing online tasks. In C. Margolinas (Ed.) Task Design in Mathematics Education. Proceedings of ICMI Study 22. Oxford. Retrieved from http://hal.archives-ouvertes.fr/docs/00/83/74/88/PDF/ICMI_STudy_22_proceedings_2013-FINAL_V2.pdf

  • Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht, The Netherlands: Reidel.

    Google Scholar 

  • Gueudet, G., Pepin, B., & Trouche, L. (2013). Textbooks’ Design and Digital Resources. In C. Margolinas (ed.), Task Design in Mathematics Education (pp. 327–337). ICMI Study 22, Oxford. Retrieved from http://hal.archives-ouvertes.fr/docs/00/83/74/88/PDF/ICMI_STudy_22_proceedings_2013-FINAL_V2.pdf

  • Hoyles, C., Noss, R., Vahey, P., & Roschelle, J. (2013). Cornerstone mathematics: Designing digital technology for teacher adaptation and scaling. ZDM, The International Journal on Mathematics Education, 45(7), 1057–1070.

    Article  Google Scholar 

  • Johnson, D. C. (1981). Calculator exploration for concept reinforcement. Mathematics Teaching, 95, 28–29.

    Google Scholar 

  • Joubert, M. (2013). Using computers in classroom mathematical tasks: revisiting theory to develop recommendations for the design of tasks. In C. Margolinas (Ed.), Proceedings of ICMI Study 22 (pp. 71–79). Oxford, UK: ICMI

    Google Scholar 

  • Kaptelinin, V., & Nardi, B. (2006). Acting with technology: Activity theory and interaction design. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kieran, C., & Drijvers, P. (2006). The co-emergence of machine techniques, paper-and-pencil techniques, and theoretical reflection: A study of CAS use in secondary school algebra. International Journal of Computers for Mathematical Learning, 11(2), 205–263.

    Article  Google Scholar 

  • Kynigos, C. (2007). Using half-baked microworlds to challenge teacher educators’ knowing. International journal of computers for mathematical learning, 12(2), 87–111.

    Google Scholar 

  • Laborde, C. (2002). Integration of technology in the design of geometry tasks with Cabri-geometry. International Journal of Computers for Mathematical Learning, 6(3), 283–317.

    Article  Google Scholar 

  • Lagrange, J.-b. (1999). Complex calculators in the classroom: Theoretical and practical reflections on teaching pre-calculus. International Journal of Computers for Mathematical Learning, 4(1), 51–81.

    Article  Google Scholar 

  • Lagrange, J.-B. (2000). L'intégration d’instruments informatiques dans l’enseignement: une approche par les techniques. Educational Studies in Mathematics, 43(1), 1–30.

    Article  Google Scholar 

  • Lagrange, J.-B. (2005). Using symbolic calculators to study mathematics. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument (pp. 113–136). New York: Springer.

    Chapter  Google Scholar 

  • Lumb, S., Monaghan, J., & Mulligan, S. (2000). Issues arising when teachers make extensive Use of computer algebra. International Journal of Computer Algebra in Mathematics Education, 7(4), 223–240.

    Google Scholar 

  • Margolinas, C. (Ed.) (2013). Task Design in Mathematics Education. Proceedings of ICMI Study 22. Oxford. Retrieved from http://hal.archives-ouvertes.fr/docs/00/83/74/88/PDF/ICMI_STudy_22_proceedings_2013-FINAL_V2.pdf

  • Mason, J., & Johnston-Wilder, S. (2006). Designing and using mathematical tasks. York, England. QED Press.

    Google Scholar 

  • Monaghan, J. (2000). Some issues surrounding the use of algebraic calculators in traditional examinations. International Journal of Mathematical Education in Science and Technology, 31(3), 381–392.

    Article  Google Scholar 

  • Monaghan, J., Pool, P., Roper, T., & Threlfall, J. (2009). Open-start mathematics problems: An approach to assessing problem solving. Teaching Mathematics and its Applications, 28(1), 21–31.

    Article  Google Scholar 

  • Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and computers. Springer.

    Google Scholar 

  • Perks, P., Prestage, S., & Hewitt, D. (2002). Does the software change the maths? Micromath, 18(1), 28–31.

    Google Scholar 

  • Prediger, S., Arzarello, F., Bosch, M., & Lenfant, A. (Eds.). (2008). Comparing, combining, coordinating—networking strategies for connecting theoretical approaches. ZDM, The International Journal on Mathematics Education, 40(2), 163–327.

    Google Scholar 

  • Rabardel, P. (1999). Éléments pour une approche instrumentale en didactique des mathématiques. In M. Bailleul, Actes de la dixième université d’été de didactique des mathématiques (pp. 203–213). ARDM, Caen.

    Google Scholar 

  • Robert, A. (2012). A Didactical Framework for Studying Students’ and Teachers’ Activities when Learning and Teaching Mathematics. International Journal for Technology in Mathematics Education, 19(4), 153–157.

    Google Scholar 

  • Roschelle, J., Tatar, D., Shechtman, N., & Knudsen, J. (2008). The role of scaling up research in designing for and evaluating robustness. Educational Studies in Mathematics, 68(2), 149–170.

    Article  Google Scholar 

  • Sahlberg, P., & Berry, J. (2003). Small group learning in mathematics: teachers’ and pupils’ ideas about groupwork in school. Painosalama Oy.

    Google Scholar 

  • Thomas, M. O., & Lin, C. (2013). Designing Tasks for Use With Digital Technology. Task Design in Mathematics Education Proceedings of ICMI Study 22, 109.

    Google Scholar 

  • Threlfall, J., Pool, P., Homer, M., & Swinnerton, B. (2007). Implicit aspects of paper and pencil mathematics assessment that come to light through the use of the computer. Educational Studies in Mathematics, 66(3), 335–348.

    Article  Google Scholar 

  • Trgalová, J., & Jahn, A.P. (2011). Quality issue in the design and use of resources by mathematics teachers. ZDM – The International Journal on Mathematics Education 45, 973–986.

    Google Scholar 

  • Trouche, L. (1998). Faire des mathématiques avec des calculatrices symboliques, conjecturer et prouver. 37 variations sur un thème imposé, IREM, Université Montpellier 2.

    Google Scholar 

  • Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized learning environments: guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9, 281–307.

    Google Scholar 

  • Warfield, V. (2006) Invitation to Didactique. http://www.math.washington.edu/~warfield/Inv%20to%20Did66%207-22-06.pdf (accessed 13 December 2015).

  • Watson, A., & Mason, J. (2004). The exercise as mathematical object: Dimensions of possible variation in practice. In Proc. 24th Conf. of The British Society of Research in Learning Mathematics (Vol. 2, pp. 107–112).

    Google Scholar 

  • Watson, A., Ohtani, M., Ainley, J., Bolite-Frant, J., Doorman, M., Kieran, C., Leung, A., Margolinas, C., Sullivan, P., Thompson, D., & Yudong Yang, Y. (2013). Task Design in Mathematics Education – Introduction, Proceedings of ICMI Study 22, Oxford, England.

    Google Scholar 

  • Wertsch, J.V. (1998). Mind as action. Oxford: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Monaghan, J., Trouche, L. (2016). Tasks and Digital Tools. In: Tools and Mathematics. Mathematics Education Library, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-319-02396-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02396-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02395-3

  • Online ISBN: 978-3-319-02396-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics