Skip to main content

Model Order Reduction in Fluid Dynamics: Challenges and Perspectives

  • Chapter
Reduced Order Methods for Modeling and Computational Reduction

Part of the book series: MS&A - Modeling, Simulation and Applications ((MS&A,volume 9))

Abstract

This chapter reviews techniques of model reduction of fluid dynamics systems. Fluid systems are known to be difficult to reduce efficiently due to several reasons. First of all, they exhibit strong nonlinearities — which are mainly related either to nonlinear convection terms and/or some geometric variability — that often cannot be treated by simple linearization. Additional difficulties arise when attempting model reduction of unsteady flows, especially when long-term transient behavior needs to be accurately predicted using reduced order models and more complex features, such as turbulence or multiphysics phenomena, have to be taken into consideration. We first discuss some general principles that apply to many parametric model order reduction problems, then we apply them on steady and unsteady viscous flows modelled by the incompressible Navier-Stokes equations. We address questions of inf-sup stability, certification through error estimation, computational issues and — in the unsteady case — long-time stability of the reduced model. Moreover, we provide an extensive list of literature references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1 In practice, N r POD modes are required to resolve the first N r /2 temporal harmonics, and these can be computed from N s = 2N r snapshots [96].

  2. 2.

    2 For numerical stability reasons the PODeigenvalues are usually not computed from the correlation matrix itself, but rather as the squares of the singular values of the snapshot matrix obtained by collecting all the snapshots as column vectors.

  3. 3.

    3 Gram-Schmidt orthonormalization is required in order to ensure the algebraic stability of the reduced basis approximation. Furthermore, in case of parameter-dependent geometries, the velocity space has to be enriched, as detailed in Sect. 9.3.

  4. 4.

    4 This algorithm has been first introduced in [64] for both coercive and noncoercive problems, analyzed in [107] in the coercive case and afterwards improved in [32]. A general version using the so-called “natural norm” [110] has been analyzed in [61], where it has been applied to noncoercive problems such as Helmholtz equations — the simpler coercive case can be seen as a particular instance where the stability factor is just the coercivity constant.

References

  1. Ahuja, MS., Rowley, C.: Feedback control of unstable steady states of flow past a flat plate using reduced-order estimators. J. Fluid Mech 645, 447–478 (2010)

    MATH  MathSciNet  Google Scholar 

  2. Akhtar, I., Nayfeh, A., Ribbens, C.: On the stability and extension of reduced-order Galerkin models in incompressible flows. Theor. Comp. Fluid Dyn. 23(3), 213–237 (2009)

    MATH  Google Scholar 

  3. Amsallem, D., Cortial, J., Carlberg, K., Farhat, C.: A method for interpolating on manifolds structural dynamics reduced-order models. Int. J. Numer. Methods Engr. 80(9), 1241–1258 (2009)

    MATH  Google Scholar 

  4. Amsallem, D., Farhat, C.: An online method for interpolating linear parametric reducedorder models. SIAM J. Sci. Comput. 33(5), 2169–2198 (2011)

    MATH  MathSciNet  Google Scholar 

  5. Amsallem, D., Zahr, M., Farhat, C.: Nonlinear model order reduction based on local reduced-order bases. Int. J. Numer. Methods Engr. 92(10), 891–916 (2012)

    MathSciNet  Google Scholar 

  6. Antil, H., Heinkenschloss, M., Hoppe, R.: Domain decomposition and balanced truncation model reduction for shape optimization of the Stokes system. Optim. Methods Softw. 26(4-5), 643–669 (2011)

    MATH  MathSciNet  Google Scholar 

  7. Antoulas, A.: Approximation of Large-Scale Dynamical Systems. SIAM (2005)

    Google Scholar 

  8. Astrid, P., Weiland, S., Willcox, K., Backx, T.: Missing point estimation in models described by proper orthogonal decomposition. IEEE. T. Automat. Contr. 53(10), 2237–2251 (2008)

    MathSciNet  Google Scholar 

  9. Aubry, N., Holmes, P., Lumley, J., Stone, E.: The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192(115), 173 (1988)

    Google Scholar 

  10. Aubry, N., Holmes, P., Lumley, J., Stone, E.: The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192(115), 355 (1988)

    Google Scholar 

  11. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

    MATH  MathSciNet  Google Scholar 

  12. Babuška, I.: Error-bounds for finite element method. Numer. Math. 16, 322–333 (1971).

    MATH  MathSciNet  Google Scholar 

  13. Baiges, J., Codina, R., Idelsohn, S.: Explicit reduced order models for the stabilized finite element approximation of the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids (2013). DOI 10.1002/fld.3777

  14. Barbagallo, A., Sipp, D., Schmid, P.J.: Closed-loop control of an open cavity flow using reduced-order models. J. Fluid Mech. 641(1), 1–50 (2009)

    MATH  Google Scholar 

  15. Barone, M.F., Kalashnikova, I., Segalman, D.J., Thornquist, H.K.: Stable Galerkin reduced order models for linearized compressible flow. J. Comp. Phys. 228(6), 1932–1946 (2009)

    MATH  MathSciNet  Google Scholar 

  16. Barrault, M., Maday, Y., Nguyen, N., Patera, A.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris. Sér. I Math. 339(9), 667–672 (2004)

    MATH  MathSciNet  Google Scholar 

  17. Bergmann, M., Bruneau, C., Iollo, A.: Enablers for robust POD models. J. Comp. Phys. 228(2), 516–538 (2009)

    MATH  MathSciNet  Google Scholar 

  18. Bergmann, M., Cordier, L.: Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models. J. Comp. Phys. 227(16), 7813–7840 (2008)

    MATH  MathSciNet  Google Scholar 

  19. Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43, 1457–1472 (2011)

    MATH  MathSciNet  Google Scholar 

  20. Brezzi, F.: On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers. R.A.I.R.O., Anal. Numér. 2, 129–151 (1974)

    MathSciNet  Google Scholar 

  21. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15. Springer-Verlag, New York (1991)

    Google Scholar 

  22. Brezzi, F., Rappaz, J., Raviart, P.: Finite dimensional approximation of nonlinear problems. Part I: Branches of nonsingular solutions. Numer. Math. 36, 1–25 (1980)

    MATH  MathSciNet  Google Scholar 

  23. Buffa, A., Maday, Y., Patera, A., Prud’homme, C., Turinici, G.: A priori convergence of the greedy algorithm for the parametrized reduced basis. ESAIM Math. Modelling Numer. Anal. 46(3), 595–603 (2012)

    MATH  MathSciNet  Google Scholar 

  24. Bui-Thanh, T., Willcox, K., Ghattas, O.: Parametric reduced-order models for probabilistic analysis of unsteady aerodynamics applications. AIAA J. 46(10) (2008)

    Google Scholar 

  25. Bui-Thanh, T., Willcox, K., Ghattas, O., van Bloemen Waanders, B.: Goal-oriented, model-constrained optimization for reduction of large-scale systems. J. Comp. Phys. 224(2), 880–896 (2007)

    MATH  Google Scholar 

  26. Burkardt, J., Gunzburger, M., Lee, H.: Centroidal Voronoi tessellation-based reduced-order modeling of complex systems. SIAM J. Sci. Comput. 28(2), 459–484 (2006)

    MATH  MathSciNet  Google Scholar 

  27. Burkardt, J., Gunzburger, M., Lee, H.: POD and CVT-based reduced-order modeling of Navier-Stokes flows. Comput. Meth. Appl. Mech. Engrg. 196(1-3), 337–355 (2006)

    MATH  MathSciNet  Google Scholar 

  28. Caloz, G., Rappaz, J.: Numerical analysis for nonlinear and bifurcation problems. In: P. Ciarlet, J. Lions (eds.) Handbook of Numerical Analysis, Vol. V, Techniques of Scientific Computing (Part 2), pp. 487–637. Elsevier Science B.V., Amsterdam (1997)

    Google Scholar 

  29. Carlberg, K., Farhat, C.: A low-cost, goal-oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systems. Int. J. Numer. Methods Engr. 86(3), 381–402 (2011)

    MATH  MathSciNet  Google Scholar 

  30. Cazemier, W., Verstappen, R., Veldman, A.: Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Phys. Fluids 10, 1685 (1998)

    Google Scholar 

  31. Chaturantabut, S., Sorensen, D.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)

    MATH  MathSciNet  Google Scholar 

  32. Chen, X., Akella, S., Navon, I.: A dual-weighted trust-region adaptive POD 4-D Var applied to a finite-volume shallow water equations model on the sphere. Int. J. Numer. Methods Fluids 68(3), 377–402 (2012)

    MATH  MathSciNet  Google Scholar 

  33. Chen, Y., Hesthaven, J., Maday, Y., Rodriguez, J.: A monotonic evaluation of lower bounds for inf-sup stability constants in the frame of reduced basis approximations. C. R. Acad. Sci. Paris. Sér. I Math. 346, 1295–1300 (2008)

    MATH  MathSciNet  Google Scholar 

  34. Christensen, E., Brøns, M., Sørensen, J.: Evaluation of proper orthogonal decomposition-based decomposition techniques applied to parameter-dependent nonturbulent flows. SIAM J. Sci. Comput. 21, 1419–1434 (2000)

    MATH  Google Scholar 

  35. Cochelin, B., Vergez, C.: A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J. Sound Vibration 324(1), 243–262 (2009)

    Google Scholar 

  36. Colonius, T., Rowley, C., Freund, J., Murray, R.: On the choice of norm for modeling compressible flow dynamics at reduced-order using the POD. In: Proc. 41st IEEE Conf. on Decision and Control, vol. 3, pp. 3273–3278. IEEE (2002)

    Google Scholar 

  37. Daescu, D., Navon, I.: Efficiency of a POD-based reduced second-order adjoint model in 4D-Var data assimilation. Int. J. Numer. Methods Fluids 53(6), 985–1004 (2007)

    MATH  MathSciNet  Google Scholar 

  38. Daescu, D., Navon, I.: A dual-weighted approach to order reduction in 4DVAR data assimilation. Monthly Weather Review 136(3), 1026–1041 (2008)

    Google Scholar 

  39. Dahmen, W., Huang, C., Schwab, C., Welper, G.: Adaptive Petrov-Galerkin methods for first order transport equations. SIAM J. Numer. Anal. 50(5) (2012)

    Google Scholar 

  40. Deane, A., Kevrekidis, I., Karniadakis, G., Orszag, S.: Low-dimensionalmodels for complex geometry flows: Application to grooved channels and circular cylinders. Phys. Fluids 3(10), 2337–2354 (1991)

    MATH  Google Scholar 

  41. Demkowicz, L., Gopalakrishnan, J.: A class of discontinuous Petrov-Galerkin methods. part I: The transport equation. Comput. Methods Appl. Mech. Engr. 199(23-24), 1558–1572 (2010)

    MATH  MathSciNet  Google Scholar 

  42. Demkowicz, L., Gopalakrishnan, J.: A class of discontinuous Petrov-Galerkin methods. II. optimal test functions. Numer. Methods Partial Differential Equations 27(1), 70–105 (2011)

    MATH  MathSciNet  Google Scholar 

  43. Deparis, S.: Reduced basis error bound computation of parameter-dependent Navier-Stokes equations by the natural norm approach. SIAM J. Num. Anal. 46(4), 2039–2067 (2008)

    MATH  MathSciNet  Google Scholar 

  44. Deparis, S., Løvgren, A.: Stabilized reduced basis approximation of incompressible three-dimensional Navier-Stokes equations in parametrized deformed domains. J. Sci. Comput. 50(1), 198–212 (2012)

    MATH  MathSciNet  Google Scholar 

  45. Deparis, S., Rozza, G.: Reduced basis method for multi-parameter-dependent steady Navier-Stokes equations: Applications to natural convection in a cavity. J. Comp. Phys. 228(12), 4359–4378 (2009)

    MATH  MathSciNet  Google Scholar 

  46. Djouadi, S.: On the connection between balanced proper orthogonal decomposition, balanced truncation, and metric complexity theory for infinite dimensional systems. In: Proc. Am. Control Conf., June 30–July 2, Baltimore, MD, 2010 pp. 4911–4916 (2010)

    Google Scholar 

  47. Du, Q., Gunzburger, M.: Model reduction by proper orthogonal decomposition coupled with centroidal Voronoi tessellation. In: Proc. Fluids Engineering Division Summer Meeting, FEDSM2002-31051, ASME (2002)

    Google Scholar 

  48. Dumon, A., Allery, C., Ammar, A.: Proper general decomposition (PGD) for the resolution of Navier-Stokes equations. J. Comp. Phys. 230, 1387–1407 (2011)

    MATH  MathSciNet  Google Scholar 

  49. Eftang, J., Knezevic, D., Patera, A.: An “hp” certified reduced basis method for parametrized parabolic partial differential equations. Math. Comput. Model. Dynam. Syst. 17(4), 395–422 (2011)

    MATH  MathSciNet  Google Scholar 

  50. Fahl, M.: Trust-region methods for flow control based on reduced order modelling. Ph.D. thesis, Universität Trier (2001)

    Google Scholar 

  51. Gerner, A., Veroy, K.: Certified reduced basis methods for parametrized saddle point problems. SIAM J. Sci. Comp. 34(5), A2812–A2836 (2012)

    MATH  MathSciNet  Google Scholar 

  52. Girault, V., Raviart, P.A.: Finite element methods for Navier-Stokes equations: Theory and algorithms. Springer-Verlag, Berlin Heidelberg New York (1986)

    MATH  Google Scholar 

  53. Grepl, M., Patera, A.: A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM Math. Modelling Numer. Anal. 39(1), 157–181 (2005)

    MATH  MathSciNet  Google Scholar 

  54. Grinberg, L., Yakhot, A., Karniadakis, G.: Analyzing transient turbulence in a stenosed carotid artery by proper orthogonal decomposition. Ann. Biomed. Eng. 37(11), 2200–2217 (2009)

    Google Scholar 

  55. Gunzburger, M., Peterson, J., Shadid, J.: Reducer-order modeling of time-dependent PDEs with multiple parameters in the boundary data. Comput. Methods Appl. Mech. Engrg. 196, 1030–1047 (2007)

    MATH  MathSciNet  Google Scholar 

  56. Haasdonk, B.: Convergence rates of the POD-greedy method. ESAIM Math. Modelling Numer. Anal. (2013). DOI 10.1051/m2an/2012045

  57. Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM Math. Modelling Numer. Anal. 42(02), 277–302 (2008)

    MATH  MathSciNet  Google Scholar 

  58. Hall, K., Thomas, J., Clark, W.: Computation of unsteady nonlinear flows in cascades using a harmonic balance technique. AIAA J. 40(5), 879–886 (2002)

    Google Scholar 

  59. Hay, A., Borggaard, J., Akhtar, I., Pelletier, D.: Reduced-order models for parameter dependent geometries based on shape sensitivity analysis. J. Comp. Phys. 229(4), 1327–1352 (2010)

    MATH  MathSciNet  Google Scholar 

  60. Hay, A., Borggaard, J., Pelletier, D.: Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition. J. Fluid Mech. 629, 41–72 (2009)

    MATH  MathSciNet  Google Scholar 

  61. Holmes, P., Lumley, J., Berkooz, G.: Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  62. Huynh, D., Knezevic, D., Chen, Y., Hesthaven, J., Patera, A.: A natural-norm successive constraint method for inf-sup lower bounds. Comput. Meth. Appl. Mech. Engrg. 199(29-32), 1963–1975 (2010)

    MATH  MathSciNet  Google Scholar 

  63. Huynh, D., Knezevic, D., Patera, A.: A static condensation reduced basis element method: approximation and a posteriori error estimation. ESAIM Math. Modelling Numer. Anal. 47(1), 213–251 (2013)

    MATH  MathSciNet  Google Scholar 

  64. Huynh, D., Knezevic, D., Peterson, J., Patera, A.: High-fidelity real-time simulation on deployed platforms. Comp. Fluids 43(1), 74–81 (2011)

    MATH  MathSciNet  Google Scholar 

  65. Huynh, D., Rozza, G., Sen, S., Patera, A.: A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability costants. C. R. Acad. Sci. Paris. Sér. I Math. 345, 473–478 (2007)

    MATH  MathSciNet  Google Scholar 

  66. Iapichino, L., Quarteroni, A., Rozza, G.: A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks. Comput. Methods Appl. Mech. Engrg. 221-222, 63–82 (2012)

    MathSciNet  Google Scholar 

  67. Iollo, A., Lanteri, S., Désidéri, J.: Stability properties of POD-Galerkin approximations for the compressible Navier-Stokes equations. Theor. Comp. Fluid Dyn. 13(6), 377–396 (2000)

    MATH  Google Scholar 

  68. Johansson, P., Andersson, H., Rønquist, E.: Reduced-basis modeling of turbulent plane channel flow. Comput. Fluids 35(2), 189–207 (2006)

    MATH  Google Scholar 

  69. Johnson, C., Rannacher, R., Boman, M.: Numerics and hydrodynamic stability: toward error control in computational fluid dynamics. SIAM J. Numer. Anal. 32(4), 1058–1079 (1995)

    MATH  MathSciNet  Google Scholar 

  70. Kim, T.: Frequency-domain Karhunen-Loève method and its application to linear dynamic systems. AIAA J. 36(11), 2117–2123 (1998)

    Google Scholar 

  71. Knezevic, D., Nguyen, N., Patera, A.: Reduced basis approximation and a posteriori error estimation for the parametrized unsteady Boussinesq equations. Math. Mod. and Meth. in Appl. Sc. 21(7), 1415–1442 (2011)

    MATH  MathSciNet  Google Scholar 

  72. Knezevic, D.J.: Reduced basis approximation and a posteriori error estimates for a multiscale liquid crystal model. Math. Comput. Model. Dynam. Syst. 17(4), 443–461 (2011)

    MATH  MathSciNet  Google Scholar 

  73. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40(2), 492–515 (2003)

    MathSciNet  Google Scholar 

  74. Kunisch, K., Volkwein, S.: Optimal snapshot location for computing POD basis functions. ESAIM Math. Modelling Numer. Anal. 44(3), 509 (2010)

    MATH  MathSciNet  Google Scholar 

  75. Lall, S., Marsden, J., Glavaški, S.: Empirical model reduction of controlled nonlinear systems. In: Proc. IFAC World Congress Vol. F. Int. Federation Automatic Control, Beijing, 1999 pp. 473–478 (1999)

    Google Scholar 

  76. Lall, S., Marsden, J., Glavaški, S.: A subspace approach to balanced truncation for model reduction of nonlinear control systems. Int. J. Robust Nonlinear Control 12(6), 519–535 (2002)

    MATH  Google Scholar 

  77. Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: A reduced computational and geometrical framework for inverse problems in haemodynamics. Int. J. Numer. Meth. Biomed. Engng. 29(7), 741–776 (2013)

    MathSciNet  Google Scholar 

  78. Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: Generalized reduced basis methods and n-width estimates for the approximation of the solutionmanifold of parametric PDEs. In: F. Brezzi, P. Colli Franzone, U. Gianazza, G. Gilardi (eds.) Analysis and Numerics of Partial Differential Equations. INdAM Series, vol. 4. Springer (2013). Re-printed also on Bollettino Unione Matematica Italiana (UMI), under permission/agreement Springer-UMI

    Google Scholar 

  79. Lassila, T., Quarteroni, A., Rozza, G.: A reduced basis model with parametric coupling for fluid-structure interaction problem. SIAM J. Sci. Comput. 34(2), A1187–A1213 (2012)

    MATH  MathSciNet  Google Scholar 

  80. Leblond, C., Allery, C., Inard, C.: An optimal projection method for the reduced-order modeling of incompressible flows. Comput. Methods Appl. Mech. Engrg. 200, 2507–2527 (2011)

    MATH  MathSciNet  Google Scholar 

  81. Lions, P.: Mathematical Topics in Fluid Mechanics. Oxford Lecture Series in Mathematics and Its Applications. Clarendon Press, Oxford, UK (1996)

    Google Scholar 

  82. Løvgren, A., Maday, Y., Rønquist, E.: A reduced basis element method for the steady Stokes problem. ESAIM Math. Modelling Numer. Anal. 40(3), 529–552 (2006)

    Google Scholar 

  83. Lucia, D., Beran, P., Silva, W.: Reduced-order modeling: new approaches for computational physics. Prog. Aerosp. Sci. 40(1-2), 51–117 (2004)

    Google Scholar 

  84. Lumley, J.: The structure of inhomogeneous turbulent flows. In: Yaglom, A.M., Tatarski, (eds.) Atmospheric turbulence and radio wave propagation pp. 166–178 (1967)

    Google Scholar 

  85. Ma, X., Karniadakis, G., Park, H., Gharib, M.: DPIV-driven flow simulation: a new computational paradigm. Proc. R. Soc. A 459(2031), 547–565 (2003)

    MATH  MathSciNet  Google Scholar 

  86. Maday, Y., Nguyen, N., Patera, A., Pau, G.: A general multipurpose interpolation procedure: the magic points. Commun. Pure Appl. Anal. 8(1) (2009)

    Google Scholar 

  87. Maday, Y., Patera, A., Turinici, G.: Global a priori convergence theory for reduced-basis approximation of single-parameter symmetric coercive elliptic partial differential equations. C.R. Acad. Sci. Paris. Sér. I Math. 335, 1–6 (2002)

    MathSciNet  Google Scholar 

  88. Manzoni, A.: Reduced models for optimal control, shape optimization and inverse problems in haemodynamics. Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Lausanne (2012)

    Google Scholar 

  89. Manzoni, A., Quarteroni, A., Rozza, G.: Shape optimization of cardiovascular geometries by reduced basis methods and free-form deformation techniques. Int. J. Numer. Methods Fluids 70(5), 646–670 (2012)

    MathSciNet  Google Scholar 

  90. Maple, R., King, P., Orkwis, P., Wolff, J.: Adaptive harmonic balance method for nonlinear time-periodic flows. J. Comp. Phys. 193(2), 620–641 (2004)

    MATH  Google Scholar 

  91. McMullen, M.: The application of non-linear frequency domain methods to the Euler and Navier-Stokes equations. Ph.D. thesis, Stanford University, Stanford, CA, USA (2003)

    Google Scholar 

  92. Moore, B.: Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Automat. Contr. 26(1) (1981)

    Google Scholar 

  93. Néron, D., Ladevèze, P.: Proper generalized decomposition for multiscale and multiphysics problems. Arch. Comput. Methods Engrg. 17(4), 351–372 (2010)

    MATH  Google Scholar 

  94. Nguyen, N., Rozza, G., Patera, A.: Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers equation. Calcolo 46(3), 157–185 (2009)

    MATH  MathSciNet  Google Scholar 

  95. Nguyen, N., Veroy, K., Patera, A.: Certified real-time solution of parametrized partial differential equations. In: Yip, S. (Ed.). Handbook of Materials Modeling pp. 1523–1558 (2005)

    Google Scholar 

  96. Noack, B., Afanasiev, K., Morzynski, M., Tadmor, G., Thiele, F.: A hierarchy of lowdimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497(1), 335–363 (2003)

    MATH  MathSciNet  Google Scholar 

  97. Noack, B., Papas, P., Monkewitz, P.: The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J. Fluid Mech. 523(1), 339–365 (2005)

    MATH  MathSciNet  Google Scholar 

  98. Noor, A., Peters, J.: Reduced basis technique for nonlinear analysis of structures. AIAA J. 18(4), 455–462 (1980)

    Google Scholar 

  99. Peterson, J.: The reduced basis method for incompressible viscous flow calculations. SIAM J. Sci. Stat. Comput. 10, 777–786 (1989)

    MATH  Google Scholar 

  100. Quarteroni, A.: Numerical Models for Differential Problems, 2nd ed. Modeling, Simulation and Applications (MS&A), Vol. 8. Springer-Verlag Italia, Milano (2014)

    Google Scholar 

  101. Quarteroni, A., Rozza, G.: Numerical solution of parametrized Navier-Stokes equations by reduced basis methods. Numer. Methods Partial Differential Equations 23(4), 923–948 (2007)

    MATH  MathSciNet  Google Scholar 

  102. Quarteroni, A., Rozza, G., Manzoni, A.: Certified reduced basis approximation for parametrized partial differential equations in industrial applications. J. Math. Ind. 1(3) (2011)

    Google Scholar 

  103. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin Heidelberg (1994)

    Google Scholar 

  104. Ravindran, S.: Reduced-order adaptive controllers for fluid flows using POD. J. Sci. Comput. 15(4), 457–478 (2000)

    MATH  MathSciNet  Google Scholar 

  105. Ravindran, S.: A reduced-order approach for optimal control of fluids using proper orthogonal decomposition. Int. J. Numer. Meth. Fluids 34, 425–448 (2000)

    MATH  MathSciNet  Google Scholar 

  106. Rowley, C.: Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifur. Chaos Appl. Sci. Engrg. 15(3), 997–1014 (2005)

    MATH  MathSciNet  Google Scholar 

  107. Rozza, G., Huynh, D., Manzoni, A.: Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants. Numer. Math. 125(1), 741–776 (2013). DOI 10.1007/s00211-013-0534-8

    MathSciNet  Google Scholar 

  108. Rozza, G., Huynh, D., Patera, A.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Engrg. 15, 229–275 (2008)

    MATH  MathSciNet  Google Scholar 

  109. Rozza, G., Manzoni, A., Negri, F.: Reduction strategies for PDE-constrained optimization problems in haemodynamics. In: J. Eberhardsteiner et.al. (ed.) Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Vienna, Austria, September 10-14, 2012 (2012)

    Google Scholar 

  110. Rozza, G., Veroy, K.: On the stability of reduced basis methods for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Engrg. 196(7), 1244–1260 (2007)

    MATH  MathSciNet  Google Scholar 

  111. Sen, S., Veroy, K., Huynh, P., Deparis, S., Nguyen, N., Patera, A.: “natural norm” a posteriori error estimators for reduced basis approximations. J. Comp. Phys. 217(1), 37–62 (2006)

    MATH  MathSciNet  Google Scholar 

  112. Sirisup, S., Karniadakis, G.: A spectral viscosity method for correcting the long-term behavior of POD models. J. Comp. Phys. 194(1), 92–116 (2004)

    MATH  MathSciNet  Google Scholar 

  113. Sirisup, S., Karniadakis, G.: Stability and accuracy of periodic flow solutions obtained by a POD-penalty method. J. Phys. D 202(3), 218–237 (2005)

    MATH  MathSciNet  Google Scholar 

  114. Sirisup, S., Karniadakis, G., Yang, Y., Rockwell, D.: Wave-structure interaction: simulation driven by quantitative imaging. Proc. R. Soc. A 460(2043), 729–755 (2004)

    MATH  MathSciNet  Google Scholar 

  115. Sirovich, L.: Turbulence and the dynamics of coherent structures. Part I: Coherent structures. Q. Appl. Math. 45(3), 561–571 (1987)

    MATH  MathSciNet  Google Scholar 

  116. Tadmor, E.: Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26(1), 30–44 (1989)

    MATH  MathSciNet  Google Scholar 

  117. Tadmor, G., Lehmann, O., Noack, B., Morzyński, M.: Mean field representation of the natural and actuated cylinder wake. Phys. Fluids 22, 034 (2010)

    Google Scholar 

  118. Tadmor, G., Lehmann, O., Noack, B., Morzyński, M.: Mean field representation of the natural and actuated cylinder wake. Phys. Fluids 22, 102 (2010)

    Google Scholar 

  119. Tamellini, L., Le Maître, O., Nouy, A.: Model reduction based on proper generalized decomposition for the stochastic steady incompressible Navier-Stokes equations. Tech. Rep. 26, MOX — Modellistica e calcolo scientifico, Politecnico di Milano (2012)

    Google Scholar 

  120. Temam, R.: Navier-Stokes Equations. AMS Chelsea, Providence, Rhode Island (2001)

    Google Scholar 

  121. Terragni, F., Vega, J.M.: On the use of POD-based ROMs to analyze bifurcations in some dissipative systems. Physica D: Nonlinear Phenomena 241(17), 1393–1405 (2012). DOI 10.1016/j.physd.2012.04.009

    MATH  Google Scholar 

  122. Thomas, J., Hall, K., Dowell, E.: A harmonic balance approach for modeling nonlinear aeroelastic behavior of wings in transonic viscous flow. In: 44 th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference (2003)

    Google Scholar 

  123. Tonn, T., Urban, K., Volkwein, S.: Optimal control of parameter-dependent convectiondiffusion problems around rigid bodies. SIAM J. Sci. Comput. 32(3), 1237–1260 (2010)

    MATH  MathSciNet  Google Scholar 

  124. Tu, J., Rowley, C.: An improved algorithm for balanced POD through an analytic treatment of impulse response tails. J. Comp. Phys. 231(16) (2012)

    Google Scholar 

  125. Urban, K., Patera, A.T.: An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comp. (2013). In press

    Google Scholar 

  126. Veroy, K., Patera, A.: Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Meth. Fluids 47(8-9), 773–788 (2005)

    MATH  MathSciNet  Google Scholar 

  127. Veroy, K., Prud’homme, C., Rovas, D.V., Patera, A.T.: A posteriori error bounds for reduced basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In: Proceedings of the 16thAIAAComputational Fluid Dynamics Conference (2003). Paper 2003-3847

    Google Scholar 

  128. Wang, Z., Akhtar, I., Borggaard, J., Iliescu, T.: Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison. Comput. Meth. Appl. Mech. Engrg. 237-240, 10–26 (2012)

    MathSciNet  Google Scholar 

  129. Weller, J., Lombardi, E., Bergmann, M., Iollo, A.: Numerical methods for low-order modeling of fluid flows based on POD. Int. J. Numer. Methods Fluids 63(2), 249–268 (2010)

    MATH  MathSciNet  Google Scholar 

  130. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002)

    Google Scholar 

  131. Yano, M.: A space-time Petrov-Galerkin certified reduced basis method: application to the Boussinesq equations. Submitted to SIAM J. Scientific Computing (revised, 2013). Preprint available at augustine.mit.edu

  132. Yano, M., Patera, A.T.: A space-time variational approach to hydrodynamic stability theory. Proceedings of Royal Society A, 469(2155), article 2013 0036 (2013)

    Google Scholar 

  133. Yano, M., Patera, A.T., Urban, K.: A space-time certified reduced basis method for Burgers’ equation (2013). Preprint available at augustine.mit.edu

  134. Zhou, K., Salomon, G., Wu, E.: Balanced realization and model reduction for unstable systems. Int. J. Robust Nonlinear Control 9(3), 183–198 (1999)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Rozza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G. (2014). Model Order Reduction in Fluid Dynamics: Challenges and Perspectives. In: Quarteroni, A., Rozza, G. (eds) Reduced Order Methods for Modeling and Computational Reduction. MS&A - Modeling, Simulation and Applications, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-02090-7_9

Download citation

Publish with us

Policies and ethics