We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

On the Use of Reduced Basis Methods to Accelerate and Stabilize the Parareal Method

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Book cover Reduced Order Methods for Modeling and Computational Reduction

Part of the book series: MS&A - Modeling, Simulation and Applications ((MS&A,volume 9))

Abstract

We propose a modified parallel-in-time — parareal — multi-level time integration method that, in contrast to previously proposed methods, employs a coarse solver based on a reduced model, built from the information obtained from the fine solver at each iteration. This approach is demonstrated to offer two substantial advantages: it accelerates convergence of the original parareal method for similar problems and the reduced basis stabilizes the parareal method for purely advective problems where instabilities are known to arise. When combined with empirical interpolation methods (EIM), we develop this approach to solve both linear and nonlinear problems and highlight the minimal changes required to utilize this algorithm to accelerate existing implementations. We illustrate the advantages through algorithmic design, through analysis of stability, convergence, and computational complexity, and through several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baffico, L., Bernard, S., Maday, Y., Turinici, G., Zérah, G.: Parallel-in-time moleculardynamics simulations. Physical Review E 66(5) (2002)

    Google Scholar 

  3. Bal, G.: On the Convergence and the Stability of the Parareal Algorithm to Solve Partial Differential Equations. In: Domain decomposition methods in science and engineering, pp. 425–432. Lecture Notes in Computational Science and Engineering, Vol. 40. Springer-Verlag, Berlin Heidelberg (2005)

    Google Scholar 

  4. Barrault, D., Maday, Y., Nguyen, N., Patera, A.: An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique 339(9), 667 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cavar, D., Meyer, K.E.: LES of turbulent jet in cross flow: Part 2 POD analysis and identification of coherent structures. Inter. J. Heat Fluid Flow 36, 35–46 (2012)

    Article  Google Scholar 

  6. Chatterjee, A.: An introduction to the proper orthogonal decomposition. Current Science-Bangalore 78(7), 808 (2000)

    Google Scholar 

  7. Chaturantabut, S., Sorensen, D.: Nonlinear model reduction via discrete empirical interpolation. SIAM Journal on Scientific Computing 32(5), 2737 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dai, X., Maday, Y.: Stable parareal in time method for first and second order hyperbolic system. arXiv preprint arXiv:1201.1064 (2012)

    Google Scholar 

  9. Emmerich, E.: Discrete versions of Gronwall’s lemma and their application to the numerical analysis of parabolic problems, 1st ed.. TU, Fachbereich 3, Berlin (1999)

    Google Scholar 

  10. Farhat, C.: Cortial, J.: Dastillung, C., Bavestrello, H.: Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses.. International journal for numerical methods in engineering 67(5), 697 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gander, M., Petcu, M.: in ESAIM: Analysis of a Krylov subspace enhanced parareal algorithm for linear problems. Proceedings, vol. 25, pp. 114–129 (2008)

    MATH  MathSciNet  Google Scholar 

  12. Gander, M., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM Journal on Scientific Computing 29(2), 556 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. He, L.: The reduced basis technique as a coarse solver for parareal in time simulations. J. Comput. Math 28, 676 (2010)

    MATH  MathSciNet  Google Scholar 

  14. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge, UK (2007)

    Book  MATH  Google Scholar 

  15. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer-Verlag, New York (2008)

    Book  Google Scholar 

  16. Lions, J., Maday, Y., Turinici, G.: A “parareal” in time discretization of pde’s. Comptes Rendus de l’Academie des Sciences Series I Mathematics 332(7), 661 (2001)

    MATH  MathSciNet  Google Scholar 

  17. Maday, Y., Turinici, G.: Parallel in time algorithms for quantum control: Parareal time discretization scheme. International journal of quantum chemistry 93(3), 223 (2003)

    Article  Google Scholar 

  18. Maday, Y.: Parareal in time algorithm for kinetic systems based on model reduction. High-dimensional partial differential equations in science and engineering 41, 183

    Google Scholar 

  19. Nielsen, A.S.: Feasibility study of the parareal algorithm. MSc thesis, Technical University of Denmark (2012)

    Google Scholar 

  20. Rozza, G., Huynh, D., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Archives of Computational Methods in Engineering 15(3), 229 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ruprecht, D., Krause, R.: Explicit parallel-in-time integration of a linear acousticadvection system. Computers & Fluids 59, 72 (2012)

    Article  MathSciNet  Google Scholar 

  22. Staff, G.; Rønquist, E.: Stability of the parareal algorithm. Domain decomposition methods in science and engineering pp. 449–456 (2005)

    Google Scholar 

  23. Skvortsov, L.M.: Diagonally implicit Runge-Kutta methods for stiff problems. Computational Mathematics and Mathematical Physics 46(12), 2110 (2006). DOI 10.1134/S0965542506120098. http://www.springerlink.com/index/10.1134/S0965542506120098

    Article  MathSciNet  Google Scholar 

  24. Verlet, L.: Computer “experiments” on classical fluids. i. thermodynamical properties of lennard-jones molecules. Physical review 159(1), 98 (1967)

    Article  Google Scholar 

  25. Xu, Y., Shu, C.: Local discontinuous galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations. Comp. Methods Appl. Mech. Engin. 195(25), 3430–3447 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Yan, J., Shu, C.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Num. Anal. 40(2), 769–791 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan S. Hesthaven .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, F., Hesthaven, J.S., Zhu, X. (2014). On the Use of Reduced Basis Methods to Accelerate and Stabilize the Parareal Method. In: Quarteroni, A., Rozza, G. (eds) Reduced Order Methods for Modeling and Computational Reduction. MS&A - Modeling, Simulation and Applications, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-02090-7_7

Download citation

Publish with us

Policies and ethics