Skip to main content

Case-Study: Bayesian Hierarchy for Active Perception

  • Chapter
  • 1954 Accesses

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 91))

Abstract

Consider the following scenario (Fig. 8.1) - a moving observer is presented with a non-static 3D scene containing several moving entities, probably generating some kind of sound: how does this observer perceive the 3D structure, motion trajectory and velocity of all entities in the scene, while taking into account the ambiguities and conflicts inherent to the perceptual process?

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferreira, J.F., Lobo, J., Bessiére, P., Castelo-Branco, M., Dias, J.: A Bayesian Framework for Active Artificial Perception. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 43(2), 699–711 (2013), doi:10.1109/TSMCB.2012.2214477

    Google Scholar 

  2. Ferreira, J.F., Castelo-Branco, M., Dias, J.: A hierarchical Bayesian framework for multimodal active perception. Adaptive Behavior 20(3), 172–190 (2012), doi:10.1177/1059712311434662, Published online ahead of print, March 1

    Article  Google Scholar 

  3. Ferreira, J.F., Tsiourti, C., Dias, J.: Learning emergent behaviours for a hierarchical Bayesian framework for active robotic perception. Cognitive Processing 13(1), 155–159 (2012), ISSN 1612-4782, doi:10.1007/s10339-012-0481-9

    Article  Google Scholar 

  4. Ferreira, J.F.: Bayesian Cognitive Models for 3D Structure and Motion Multimodal Perception. Ph.D. thesis, Faculty of Sciences and Technology of the University of Coimbra (FCTUC) (2011) (submitted in 2010)

    Google Scholar 

  5. Ferreira, J.F., Lobo, J., Dias, J.: Bayesian real-time perception algorithms on GPU — Real-time implementation of Bayesian models for multimodal perception using CUDA. Journal of Real-Time Image Processing 6(3), 171–186 (2011)

    Article  Google Scholar 

  6. Lee, M.D.: How cognitive modeling can benefit from hierarchical Bayesian models. Journal of Mathematical Psychology 55(1), 1–7 (2011); Special Issue on Hierarchical Bayesian Models

    Article  MathSciNet  MATH  Google Scholar 

  7. Colas, F., Diard, J., Bessiére, P.: Common Bayesian Models For Common Cognitive Issues. Acta Biotheoretica 58(2-3), 191–216 (2010)

    Article  Google Scholar 

  8. Ferreira, J.F., Dias, J.: A Bayesian Hierarchical Framework for Multimodal Active Perception. In: “Smarter Sensors, Easier Processing” - Workshop, 11th International Conference on Simulation of Adaptive Behavior, SAB 2010 (2010)

    Google Scholar 

  9. Bohg, J., Barck-holst, C., Huebner, K., Ralph, M., Rasolzadeh, B., Song, D., Kragic, D.: Towards Grasp-oriented Visual Perception For Humanoid Robots. International Journal of Humanoid Robotics 3(3), 387–434 (2009)

    Article  Google Scholar 

  10. Colas, F., Flacher, F., Tanner, T., Bessiére, P., Girard, B.: Bayesian models of eye movement selection with retinotopic maps. Biological Cybernetics 100, 203–214 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. de Croon, G.C.H.E., Sprinkhuizen-Kuyper, I.G., Postma, E.O.: Comparing Active Vision Models. Image and Vision Computing 27(4), 374–384 (2009)

    Article  Google Scholar 

  12. Ferreira, J.F., Pinho, C., Dias, J.: Implementation and Calibration of a Bayesian Binaural System for 3D Localisation. In: 2008 IEEE International Conference on Robotics and Biomimetics (ROBIO 2008), Bangkok, Thailand (2009)

    Google Scholar 

  13. Ferreira, J.F., Prado, J., Lobo, J., Dias, J.: Multimodal Active Exploration Using A Bayesian Approach. In: IASTED International Conference in Robotics and Applications, Cambridge MA, USA, pp. 319–326 (2009)

    Google Scholar 

  14. Gallup, D.: CUDA Stereo (2009), http://www.cs.unc.edu/~gallup/stereo-demo

  15. Hauagge, D.C.: CUDABOF — Bayesian Optical Flow on NVidia’s CUDA (2009), http://www.liv.ic.unicamp.br/~hauagge/Daniel_Cabrini_Hauagge/Home_Page.html

  16. Itti, L., Baldi, P.: Bayesian surprise attracts human attention. Vision Research 49, 1295–1306 (2009)

    Article  Google Scholar 

  17. Watson, T.L., Krekelberg, B.: The Relationship between Saccadic Suppresion and Perceptual Stability. Current Biology 19(12), 1040–1043 (2009)

    Article  Google Scholar 

  18. Elazary, L., Itti, L.: Interesting objects are visually salient. Journal of Vision 8(3), 1–15 (2008)

    Article  Google Scholar 

  19. Ferreira, J.F., Bessiére, P., Mekhnacha, K., Lobo, J., Dias, J., Laugier, C.: Bayesian Models for Multimodal Perception of 3D Structure and Motion. In: International Conference on Cognitive Systems (CogSys 2008), pp. 103–108. University of Karlsruhe, Karlsruhe (2008)

    Google Scholar 

  20. Rommelsea, N.N., der Stigchelc, S.V., Sergeant, J.A.: A review on eye movement studies in childhood and adolescent psychiatry (2008), Article in press; corrected proof, doi:10.1016/j.bandc.2008.08.025

    Google Scholar 

  21. Castelo-Branco, M., Mendes, M., Sebastião, A.R., Reis, A., Soares, M., Saraiva, J., Bernardes, R., Flores, R., Pérez-Jurado, L., Silva, E.: Visual phenotype in Williams-Beuren syndrome challenges magnocellular theories explaining human neurodevelopmental visual cortical disorders. Journal of Clinical Investigation 117(12), 3720–3729 (2007)

    Google Scholar 

  22. Dankers, A., Barnes, N., Zelinsky, A.: A Reactive Vision System: Active-Dynamic Saliency. In: 5th International Conference on Computer Vision Systems, Bielefeld, Germany (2007)

    Google Scholar 

  23. Ferreira, J.F., Castelo-Branco, M.: 3D Structure and Motion Multimodal Perception. State-of-the-Art Report, Institute of Systems and Robotics and Institute of Biomedical Research in Light and Image, University of Coimbra. Bayesian Approach to Cognitive Systems (BACS) European Project (2007)

    Google Scholar 

  24. Koene, A., Morén, J., Trifa, V., Cheng, G.: Gaze shift reflex in a humanoid active vision system. In: 5th International Conference on Computer Vision Systems, Bielefeld, Germany (2007)

    Google Scholar 

  25. Lu, Y.C., Christensen, H., Cooke, M.: Active binaural distance estimation for dynamic sources. In: Interspeech 2007, Antwerp, Belgium, pp. 574–577 (2007)

    Google Scholar 

  26. NVIDIA (2007) CUDA Programming Guide ver 1.2

    Google Scholar 

  27. Shic, F., Scassellati, B.: A Behavioral Analysis of Computational Models of Visual Attention. International Journal of Computer Vision 73(2), 159–177 (2007)

    Article  Google Scholar 

  28. Tsotsos, J., Shubina, K.: Attention and Visual Search: Active Robotic Vision Systems that Search. In: The 5th International Conference on Computer Vision Systems, Bielefeld (2007)

    Google Scholar 

  29. Carmi, R., Itti, L.: Causal saliency effects during natural vision. In: ACM Eye Tracking Research and Applications, pp. 1–9 (2006)

    Google Scholar 

  30. Dankers, A., Barnes, N., Zelinsky, A.: Active Vision for Road Scene Awareness. In: IEEE Intelligent Vehicles Symposium (IVS 2005), Las Vegas, USA, pp. 187–192 (2005)

    Google Scholar 

  31. Rocha, R., Dias, J., Carvalho, A.: Cooperative Multi-Robot Systems: a study of Vision-based 3-D Mapping using Information Theory. Robotics and Autonomous Systems 53(3-4), 282–311 (2005)

    Article  Google Scholar 

  32. Tatler, B.W., Baddeley, R.J., Gilchrist, I.D.: Visual correlates of fixation selection: Effects of scale and time. Vision Research 45(5), 643–659 (2005)

    Article  Google Scholar 

  33. Carpenter, R.H.S.: The saccadic system: a neurological microcosm. Advances in Clinical Neuroscience and Rehabilitation 4, 6–8 (2004) Review Article

    Google Scholar 

  34. Caspi, A., Beutter, B.R., Eckstein, M.P.: The time course of visual information accrual guiding eye movement decisions. Proceedings of the National Academy of Sciences USA 101(35), 13086–13090 (2004)

    Article  Google Scholar 

  35. Ouerhani, N., von Wartburg, R., Hugli, H., Muri, R.: Empirical Validation of the Saliency-based Model of Visual Attention. Electronic Letters on Computer Vision and Image Analysis 3(1), 13–24 (2004)

    Google Scholar 

  36. Turano, K.A., Geruschat, D.R., Baker, F.H.: Oculomotor strategies for the direction of gaze tested with a real-world activity. Vision Research 43, 333–346 (2003)

    Article  Google Scholar 

  37. Corbetta, M., Shulman, G.L.: Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience 3, 201–215 (2002), doi:10.1038/nrn755

    Article  Google Scholar 

  38. Dyde, R.T., Milner, A.D.: Two illusions of perceived orientation: one fools all of the people some of the time; the other fools all of the people all of the time. Experimental Brain Research 144, 518–527 (2002)

    Article  Google Scholar 

  39. Kopp, L., Gärdenfors, P.: Attention as a minimal criterion of intentionality in robots. Cognitive Science Quarterly 2, 302–319 (2002)

    Google Scholar 

  40. Parkhurst, D., Law, K., Niebur, E.: Modeling the role of salience in the allocation of overt visual attention. Vision Research 42, 107–123 (2002)

    Article  Google Scholar 

  41. Breazeal, C., Edsinger, A., Fitzpatrick, P., Scassellati, B.: Active Vision for Sociable Robots. IEEE Transactions on Systems, Man, and Cybernetics–Part A: Systems and Humans 31(5), 443–453 (2001)

    Article  Google Scholar 

  42. Shibata, T., Vijayakumar, S., Conradt, J., Schaal, S.: Biomimetic Oculomotor Control. Adaptive Behaviour - Special Issue on Biologically Inspired and Biomimetic System 9(3-4), 189–208 (2001)

    Article  Google Scholar 

  43. Carpenter, R.H.S.: The neural control of looking. Current Biology 10, 291–293 (2000) Primer

    Article  Google Scholar 

  44. Ballard, D.H.: An Introduction to Natural Computation. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  45. Breazeal, C., Scassellati, B.: A Context-Dependent Attention System for a Social Robot. In: Sixteenth International Joint Conference on Artificial Intelligence table of contents, pp. 1146–1153 (1999)

    Google Scholar 

  46. Simoncelli, E.P.: Bayesian Multi-Scale Differential Optical Flow. In: Jähne, B., Haussecker, H., Geissler, P. (eds.) Handbook of Computer Vision and Applications. Academic Press (1999)

    Google Scholar 

  47. Itti, L., Koch, C., Niebur, E.: A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  48. Murphy, K.J., Carey, D.P., Goodale, M.A.: The Perception of Spatial Relations in a Patient with Visual Form Agnosia. Cognitive Neuropsyshology 15(6/7/8), 705–722 (1998)

    Article  Google Scholar 

  49. Cutting, J.E., Vishton, P.M.: Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In: Epstein, W., Rogers, S. (eds.) Handbook of Perception and Cognition, vol. 5. Academic Press (1995) Perception of space and motion

    Google Scholar 

  50. Niebur, E., Itti, L., Koch, C.: Modeling the “where” visual pathway. In: Sejnowski, T.J. (ed.) 2nd Joint Symposium on Neural Computation, Caltech-UCSD. Institute for Neural Computation, La Jolla, vol. 5, pp. 26–35 (1995)

    Google Scholar 

  51. Tsotsos, J.K., Culhane, S.M., Wai, W.Y.K., Lai, Y., Davis, N., Nuflo, F.: Modeling visual attention via selective tuning. Artificial Intelligence 78, 507–545 (1995)

    Article  Google Scholar 

  52. Burr, D.C., Morrone, M.C., Ross, J.: Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature 371, 511–513 (1994) Letters to nature

    Article  Google Scholar 

  53. Goodale, M.A., Milner, A.D.: Separate visual pathways for perception and action. Trends in Neurosciences 15(1), 20–25 (1992)

    Article  Google Scholar 

  54. Elfes, A.: Using occupancy grids for mobile robot perception and navigation. IEEE Computer 22(6), 46–57 (1989)

    Article  Google Scholar 

  55. Aloimonos, J., Weiss, I., Bandyopadhyay, A.: Active Vision. International Journal of Computer Vision 1, 333–356 (1987)

    Article  Google Scholar 

  56. Bajcsy, R.: Active perception vs passive perception. In: Third IEEE Workshop on Computer Vision, Bellair, Michigan, pp. 55–59 (1985)

    Google Scholar 

  57. Mishkin, M., Ungerleider, L.G., Macko, K.A.: Object vision and spatial vision: two cortical pathways. Trends in Neuroscience 6, 414–417 (1983)

    Article  Google Scholar 

  58. Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W. H. Freeman and Company, S. Francisco (1982) ISBN-13: 978-0716715672

    Google Scholar 

  59. Ungerleider, L.G., Mishkin, M.: Two cortical visual systems. In: Ingle, D.J., Goodale, M.A., Mansfield, R.J.W. (eds.) Analysis of Visual Behaviour. MIT Press, Cambridge (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Filipe Ferreira .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferreira, J.F., Dias, J. (2014). Case-Study: Bayesian Hierarchy for Active Perception. In: Probabilistic Approaches to Robotic Perception. Springer Tracts in Advanced Robotics, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-319-02006-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02006-8_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02005-1

  • Online ISBN: 978-3-319-02006-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics