Skip to main content

Exponential Replication of Patterns in the Signal Tile Assembly Model

  • Conference paper
DNA Computing and Molecular Programming (DNA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8141))

Included in the following conference series:

Abstract

Chemical self-replicators are of considerable interest in the field of nanomanufacturing and as a model for evolution. We introduce the problem of self-replication of rectangular two-dimensional patterns in the practically motivated Signal Tile Assembly Model (STAM) [9]. The STAM is based on the Tile Assembly Model (TAM) which is a mathematical model of self-assembly in which DNA tile monomers may attach to other DNA tile monomers in a programmable way. More abstractly, four-sided tiles are assigned glue types to each edge, and self-assembly occurs when singleton tiles bind to a growing assembly, if the glue types match and the glue binding strength exceeds some threshold. The signal tile extension of the TAM allows signals to be propagated across assemblies to activate glues or break apart assemblies. Here, we construct a pattern replicator that replicates a two-dimensional input pattern over some fixed alphabet of size φ with O(φ) tile types, O(φ) unique glues, and a signal complexity of O(1). Furthermore, we show that this replication system displays exponential growth in n, the number of replicates of the initial patterned assembly.

The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-01928-4_15

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, Z., Benbernou, N., Damian, M., Demaine, E., Demaine, M., Flatland, R., Kominers, S., Schweller, R.: Shape replication through self-assembly and RNase enzymes. In: SODA 2010: Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms, Austin, Texas. Society for Industrial and Applied Mathematics (2010)

    Google Scholar 

  2. Cannon, S., Demaine, E.D., Demaine, M.L., Eisenstat, S., Patitz, M.J., Schweller, R., Summers, S.M., Winslow, A.: Two hands are better than one (up to constant factors). Arxiv preprint arXiv:1201.1650 (2012)

    Google Scholar 

  3. Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller, R.T., Souvaine, D.L.: Staged self-assembly: nanomanufacture of arbitrary shapes with O(1) glues. Natural Computing 7(3), 347–370 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Demaine, E.D., Eisenstat, S., Ishaque, M., Winslow, A.: One-dimensional staged self-assembly. In: Cardelli, L., Shih, W. (eds.) DNA 17. LNCS, vol. 6937, pp. 100–114. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Hendricks, J., Padilla, J.E., Patitz, M.J., Rogers, T.A.: Signal transmission across tile assemblies: 3D static tiles simulate active self-assembly by 2D signal-passing tiles. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 90–104. Springer, Heidelberg (2013)

    Google Scholar 

  6. Kao, M.-Y., Schweller, R.T.: Reducing tile complexity for self-assembly through temperature programming. In: SODA 2006: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 571–580 (2006)

    Google Scholar 

  7. Marchal, P.: John von neumann: The founding father of artificial life. Artificial Life 4(3), 229–235 (1998)

    Article  MathSciNet  Google Scholar 

  8. Padilla, J.E., Liu, W., Seeman, N.C.: Hierarchical self assembly of patterns from the Robinson tilings: DNA tile design in an enhanced tile assembly model, Natural Computing (online first August 17, 2011)

    Google Scholar 

  9. Padilla, J.E., Patitz, M.J., Pena, R., Schweller, R.T., Seeman, N.C., Sheline, R., Summers, S.M., Zhong, X.: Asynchronous signal passing for tile self-assembly: Fuel efficient computation and efficient assembly of shapes. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 174–185. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Patzke, V., von Kiedrowski, G.: Self-replicating sytems. ARKIVOC 5, 293–310 (2007)

    Google Scholar 

  11. Paul, N., Joyce, G.F.: A self-replicating ligase ribozyme. PNAS 99(120), 12733–12740 (2002)

    Article  Google Scholar 

  12. Reif, J.H., Sahu, S., Yin, P.: Complexity of graph self-assembly in accretive systems and self-destructible systems. In: Carbone, A., Pierce, N.A. (eds.) DNA11. LNCS, vol. 3892, pp. 257–274. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Schulman, R., Yurke, B., Winfree, E.: Robust self-replication of combinatorial information via crystal growth and scission. PNAS 109(17), 6405–6410 (2012)

    Article  Google Scholar 

  14. Schweller, R., Sherman, M.: Fuel efficient computation in passive self-assembly. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013), New Orleans, Louisiana, pp. 1513 – 1525 (2013)

    Google Scholar 

  15. Szathmary, E., Gladkih, I.: A self-replicating hexadeoxynucleotide. Journal of Theoretical Biology 138(1), 55–58 (1989)

    Article  Google Scholar 

  16. Tjivikua, T., Ballester, P., Rebek Jr., J.: Self-repllicating system. J. Am. Chem. Soc. 112(3), 1249–1250 (1990)

    Article  Google Scholar 

  17. von Kiedrowski, G.: A self-replicating hexadeoxynucleotide. Angewandte Chemie International Edition in English 25(10), 932–935 (1986)

    Article  Google Scholar 

  18. Winfree, E.: Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute of Technology (June 1998)

    Google Scholar 

  19. Zielinski, W., Orgel, L.: Autocatalytic synthesis of a tetranucleotide analogue. Nature 327, 346–347 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keenan, A., Schweller, R., Zhong, X. (2013). Exponential Replication of Patterns in the Signal Tile Assembly Model. In: Soloveichik, D., Yurke, B. (eds) DNA Computing and Molecular Programming. DNA 2013. Lecture Notes in Computer Science, vol 8141. Springer, Cham. https://doi.org/10.1007/978-3-319-01928-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01928-4_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01927-7

  • Online ISBN: 978-3-319-01928-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics