Skip to main content

Geometry of General Serial Robots

  • Chapter
  • 200k Accesses

Part of the book series: Mechanical Engineering Series ((MES,volume 124))

Abstract

Current serial robots, encountered not only in research laboratories but also in production or construction environments, include features that deserve a chapter apart. We will call here general serial robots all non-redundant serial robots that do not fall in the category of those studied in Chap. 4. Thus, the chapter is devoted to manipulators of the serial type that do not allow a decoupling of the positioning and the orientation problems. The focus of the chapter is, thus, the inverse displacement problem (IDP) of general six-revolute robots. While redundant manipulators of the serial type fall within this category as well, we will leave these aside, for their redundancy resolution calls for a more specialized background than what we have either assumed or given here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    N.B. Lee and Li of the references in this chapter are one and the same person, namely, Dr.-Ing. Hongyou Lee (a.k.a. Dr.-Ing. Hongyou Li).

  2. 2.

    By power product we mean terms with their coefficients deleted; for example, the power products of the polynomial \(5{x}^{2}y + 3xz + 9{y}^{2} + 4z = 0\) are the terms x 2 y, xz, y 2 and z.

  3. 3.

    Neither Li nor Raghavan and Roth disclosed the geometric interpretation of this fourth equation, first proposed by Lee and Liang (1988).

  4. 4.

    while the last row of Z 3 is free of θ 3, the last row of \(\mathbf{X}_{2}\mathbf{Z}_{3}\) is \([\mu _{2}s_{3},\ -\mu _{2}c_{3},\ \lambda _{2}]\).

  5. 5.

    Formulation singularities occur when, in the absence of a kinematic singularity—characterized by the vanishing of det(J), for J defined as in Eq. (5.10b)—two or three contours \(\mathcal{C}_{i}\) are tangent at an intersection. When this is the case, and a pair of functions (9.62) is chosen to find their roots, whose contours are tangent, the numerical computation of the coordinates of the intersection point becomes impossible.

  6. 6.

    The intersection points appearing in Figs. 9.3 and 9.4 were obtained using the Matlab GUI developed by Dr. Stephane Caro, a postdoctoral fellow at McGill University’s Robotic Mechanical Systems Laboratory. The GUI is available in the CD accompanying this edition

  7. 7.

    Graphical methods of mechanism analysis rely on this form of linear-equation solving.

  8. 8.

    The Italian mathematicians Niccolò Tartaglia—meaning the “stammerer,” his real name believed to have been Fontana—(1535) and Girolamo Cardano (1545), independently, or so each claimed, found the formula for the three roots of the cubic equation, now known as Cardan’s formula. Ferrari’s formula—so named after the Italian mathematician Ludovico Ferrari, a disciple of Cardano’s—provides the four roots of a quartic polynomial.

  9. 9.

    The ODA library is available on www.mcgill.ca/~/rmsl/Angeles_html/courses/MECH577/.

  10. 10.

    The accompanying CD includes a GUI allowing the user to automate the computation of accurate values of the joint variables by clicking at the visual estimates of the intersections of all four contours.

  11. 11.

    The self-motion is not readily detected by contour-intersection using this procedure.

  12. 12.

    This idea was proposed by Dr. Kourosh Etemadi Zanganeh, CANMET (Nepean, Ontario, Canada).

References

  • Albala, H., 1982, “Displacement analysis of the N-bar, single-loop, spatial linkage. Part I: Underlying mathematics and useful tables”, and “Part II: Basic displacement equations in matrix and algebraic form”, ASME J. Mechanical Design 104, pp. 504–519, 520–525.

    Google Scholar 

  • Alizade, R.A., Duffy, J., and Hajiyev, E.T., 1983, “Mathematical models for analysis and synthesis of spatial mechanism. Part IV: Seven-link spatial mechanisms”, Mechanism and Machine Theory 18, no. 5, pp. 323–328.

    Article  Google Scholar 

  • Angeles, J., 1985, “On the numerical solution of the inverse kinematic problem”, The Int. J.  Robotics Res. 4, no. 2, pp. 21–37.

    Article  Google Scholar 

  • Angeles, J., 2005, “The degree of freedom of parallel robots: a group-theoretic approach,” Proc. IEEE International Conference on Robotics & Automation, Barcelona, Spain, April 18–22, pp. 1017–1024.

    Google Scholar 

  • Angeles, J. and Etemadi Zanganeh, K., 1992, “The semigraphical solution of the direct kinematics of general platform manipulators,” Proc. ISRAM ’92. Fourth International Symposium on Robotics and Manufacturing, Nov. 11–13, Santa Fe, Vol. 4, pp. 5–52.

    Google Scholar 

  • Angeles, J. and Etemadi Zanganeh, K., 1992a, “The semigraphical determination of all inverse kinematic solutions of general six-revolute manipulators”, Proc.  9th CISM-IFToMM Symp.on Theory and Practice of Robots and Manipulators, Sept. 1–4, Udine, pp. 23–32.

    Google Scholar 

  • Angeles, J. and Etemadi Zanganeh, K., 1992b, “The semigraphical solutions of the direct kinematics of general platform manipulators”, Proc. 4th Int. Symp. Robotics and Manufacturing, Nov. 11–13, Santa Fe, vol. 4, pp. 45–52.

    Google Scholar 

  • Angeles, J., Hommel, G., and Kovács, P., 1993, Computational Kinematics, Kluwer Academic Publishers, Dordrecht.

    Book  MATH  Google Scholar 

  • Bricard, R., 1927, Leçons de Cinématique, Gauthier-Villars, Paris.

    MATH  Google Scholar 

  • Dahlquist, G. and Björck, Å., 1974, Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  • Duffy, J. and Crane, C., 1980, “A displacement analysis of the general spatial 7-link, 7R mechanism”, Mechanism and Machine Theory 15, no. 3, pp. 153–169.

    Article  Google Scholar 

  • Duffy, J. and Derby, S., 1979, “Displacement analysis of a spatial 7R mechanism—A generalized lobster’s arm”, ASME J. Mechanical Design 101, pp. 224–231.

    Article  Google Scholar 

  • Forsythe, G.E., 1970, “Pitfalls in computation, or why a math book isn’t enough”, American Mathematical Monthly 27, pp. 931–956.

    Article  MathSciNet  MATH  Google Scholar 

  • Golub, G.H. and Van Loan, C.F., 1989, Matrix Computations, The Johns Hopkins University Press, Baltimore.

    MATH  Google Scholar 

  • Husty, M.L., Pfurner, M. and Schröcker, H.-P., 2007, “A new and efficient algorithm for the inverse kinematics of a general 6R manipulator,” Mechanism and Machine Theory, Vol. 42, No. 1, pp. 66–81.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, H.Y. and Liang, C.G., 1988, “Displacement analysis of the general spatial seven-link 7R mechanism”, Mechanism and Machine Theory 23, no. 3, pp. 219–226.

    Article  Google Scholar 

  • Li, H., 1990, Ein Verfahren zur vollständigen Lösung der Rückwärtstransformation für Industrieroboter mit allgemeiner Geometrie, doctoral thesis, Universität-Gesamthochschule Duisburg, Duisburg.

    Google Scholar 

  • Li, H., Woernle, C., and Hiller, M., 1991, “A complete solution for the inverse kinematic problem of the general 6R robot manipulator”, ASME J. Mechanical Design 113, pp. 481–486.

    Article  Google Scholar 

  • Livio, M., 2005, The Equation That Couldn’t Be Solved. How Mathematical Genius Discovered the Language of Symmetry, Simon & Schuster, New York-London-Toronto-Sydney.

    MATH  Google Scholar 

  • Mavroidis, C. and Roth, B., 1992, “Structural parameters which reduce the number of manipulator configurations”, Proc.  ASME 22nd Biennial Mechanisms Conference, September 13–16, Scottsdale, DE-45, pp. 359–366.

    Google Scholar 

  • Morgan, A.P., 1987, Solving Polynomial Systems Using Continuation for Scientific and Engineering Problems, Prentice-Hall, Englewood Cliffs. NJ.

    MATH  Google Scholar 

  • Pieper, D.L., 1968, The Kinematics of Manipulators Under Computer Control, Ph.D. thesis, Stanford University, Stanford.

    Google Scholar 

  • Primrose, E.J.F., 1986, “On the input-output equation of the general 7R mechanism”, Mechanism and Machine Theory 21, no. 6, pp. 509–510.

    Article  Google Scholar 

  • Raghavan, M., 1993, “The Stewart platform of general geometry has 40 configurations”, ASME J. Mechanical Design 115, pp. 277–282.

    Article  Google Scholar 

  • Raghavan, M. and Roth, B., 1990, “Kinematic analysis of the 6R manipulator of general geometry”, in Miura, H. and Arimoto, S. (editors), Proc.  5th Int. Symposium on Robotics Research, MIT Press, Cambridge, MA.

    Google Scholar 

  • Raghavan, M. and Roth, B., 1993, “Inverse kinematics of the general 6R manipulator  and  related  linkages”, ASME J. Mechanical Design 115, pp. 502–508.

    Article  Google Scholar 

  • Salmon, G., Higher Algebra, 5th Edition (1885), reprinted: 1964, Chelsea Publishing Co., New York.

    Google Scholar 

  • Tsai, L.W. and Morgan, A.P., 1985, “Solving the kinematics of the most general six- and five-degree-of-freedom manipulators by continuation methods”, ASME J. Mechanisms, Transm., and Auto. in Design 107, pp. 189–200.

    Google Scholar 

  • Wälischmiller, W. and Li, H., 1996, “Development and application of the TELBOT System–A new Tele Robot System”, Proc.  11th CISM–IFToMM Symposium on Theory and Practice of Robots and Manipulators–Ro.Man.Sy. 11, Udine (Italy), July 1–4.

    Google Scholar 

  • Wells, D., 1986, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Middlesex, England.

    Google Scholar 

  • Williams, O., Angeles, J., and Bulca, F., 1993, “Design philosophy of an isotropic six-axis serial manipulator”, Robotics and Computer-Aided Manufacturing 10, no. 4, pp. 275–286.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

9.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(AVI 13,959 kb)

(ZIP 932 kb)

(PDF 101 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Angeles, J. (2014). Geometry of General Serial Robots. In: Fundamentals of Robotic Mechanical Systems. Mechanical Engineering Series, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-319-01851-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01851-5_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01850-8

  • Online ISBN: 978-3-319-01851-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics