Skip to main content

Restoration of neurological functions by neuroprosthetic technologies: future prospects and trends towards micro-, nano-, and biohybrid systems

  • Chapter
Operative Neuromodulation

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 97/1))

Summary

Today applications of neural prostheses that successfully help patients to increase their activities of daily living and participate in social life again are quite simple implants that yield definite tissue response and are well recognized as foreign body. Latest developments in genetic engineering, nanotechnologies and materials sciences have paved the way to new scenarios towards highly complex systems to interface the human nervous system. Combinations of neural cells with microimplants promise stable biohybrid interfaces. Nanotechnology opens the door to macromolecular landscapes on implants that mimic the biologic topology and surface interaction of biologic cells. Computer sciences dream of technical cognitive systems that act and react due to knowledge-based conclusion mechanisms to a changing or adaptive environment. Different sciences start to interact and discuss the synergies when methods and paradigms from biology, computer sciences and engineering, neurosciences, psychology will be combined. They envision the era of “converging technologies” to completely change the understanding of science and postulate a new vision of humans. In this chapter, these research lines will be discussed on some examples as well as the societal implications and ethical questions that arise from these new opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ai H, Meng H, Ichinose I, Jones SA, Mills DK, Lvov YM, Qiao X (2003) Biocompatibility of layer-by-layer self-assembled nano-film on silicone rubber for neurons. J Neurosci Meth 128(1–2): 1–8

    Article  CAS  Google Scholar 

  2. Dabouras V (2001) Molekulare Charakterisierung der Ologodendrocyten-Zellinie OLN-93, Etablierung eines zellulären Wirkstoff-Freisetzungssystems. Diplomarbeit im Fachbereich Biologie der Technischen Universität Darmstadt, Darmstadt

    Google Scholar 

  3. Fromherz P, Offenhäuser A, Vetter T, Weis J (1991) A neuron-silicon junction: a retzius cell of the leech on an insulated-gate field-effect transistor. Science 252: 1290–1293

    Article  PubMed  CAS  Google Scholar 

  4. Gross GW, Kowalski J (1991) Experimental and theoretical analysis of random nerve cell network dynamics. In: Antognetti P, Milutinovic V (eds) Neural networks: concepts, applications, and implementations. Prentice-Hall, Englewood City, New Jersey, pp 47–110

    Google Scholar 

  5. Heath DJ, Christian P, Griffin M (2002) Involvement of tissue transglutaminase in the stabilisation of biomaterial/tissue interfaces important in medical devices. Biomaterials 23(6): 1519–1526

    Article  PubMed  CAS  Google Scholar 

  6. Jimbo Y, Robinson HPC, Kawana A (1993) Simultaneous measurement of intracellular calcium and electrical activity from patterned neural networks in culture. IEEE Trans Biomed Eng 40(8): 804–810

    Article  PubMed  CAS  Google Scholar 

  7. Katsuki M, Atsuka Y, Hirayama T (1997) Reinnervation of denervated muscle by transplantation of fetal spinal cord to transected sciatic nerve in the rat. Brain Res 771: 31–36

    Article  PubMed  CAS  Google Scholar 

  8. Kennedy PR (1989) The cone electrode: a long-term electrode that records from neurites grown onto its recording surface. J Neurosci Meth 29: 181–193

    Article  CAS  Google Scholar 

  9. Kennedy PR, Bakay RA, Sharpe SM (1992) Behavioral correlates of action potentials recorded chronically inside the cone electrode. Neuroreport 3(7): 605–608

    Article  PubMed  CAS  Google Scholar 

  10. Kimura J (1989) Electrodiagnosis in diseases of nerve and muscle: principles and practice. F.A. Davis Company, Philadelphia

    Google Scholar 

  11. Klinge PM, Groos S, Wewetzer K, Haastert K, Rosahl SK, Vafa MA, Hosseini H, Samii M, Brinker T (2001) Regeneration of a transsected nerve by transplantation of spinal cord encapsulated in a vein. Neuroreport 12: 1271–1275

    Article  PubMed  CAS  Google Scholar 

  12. Liu J, Zhang Q, Remsen EE, Wooley KL (2001) Nanostructured materials designed for cell binding and transduction. Biomacromolecules 2(2): 362–368

    Article  PubMed  CAS  Google Scholar 

  13. Meyle J, Wolburg H, von Recum AF (1993) Surface micromorphology and cellular interactions. J Biomater Appl 7(4): 362–374

    PubMed  CAS  Google Scholar 

  14. Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Periph Nerv Syst 10: 229–258

    Article  Google Scholar 

  15. Nordmann A (2004) Converging technologies — shaping the future of European societies, European Communities

    Google Scholar 

  16. Pine J, Tai Y-C, Buzsaki G, Bragin A, Carpi D (1994) The cultured neuron probe. Quarterly progress report, NIH-NINDS, Neural prosthesis program No. 4, NO1-NS-3-2393

    Google Scholar 

  17. Rocco MC, Bainbridge WS (eds) (2002) Converging technologies for improving human performance. NSF/DOC-Report, Arlington, Virginia, USA

    Google Scholar 

  18. Rosahl SK (2005) Predictable social and ethical consequences of cognitive technical systems in health care. Symposium on Technical Cognitive Systems in health and medicine, September 12th–13th, 2005, Nuremberg, Germany

    Google Scholar 

  19. Ruardij G, Goedbloed MH, Rutten WL (2003) Long-term adhesion and survival of dissociated cortical neurons on miniaturized chemical patterns. Med Biol Eng Comp 41(2): 227–232

    Article  CAS  Google Scholar 

  20. Rutten WLC (2002) Selective electrical interfaces with the nervous system. Annu Rev Biomed Eng 4: 407–452

    Article  PubMed  CAS  Google Scholar 

  21. Stieglitz T, Ruf HH, Gross M, Schuettler M, Meyer JU (2002) A biohybrid system to interface peripheral nerves after traumatic lesions: design of a high channel sieve electrode. Biosens Bioelectr 17(8): 685–696

    Article  CAS  Google Scholar 

  22. Stieglitz T (2004) Considerations on surface and structural biocompatibility as prerequisite for long-term stability of neural prostheses. J Nanosci Nanotechnol 4(5): 496–503

    Article  PubMed  CAS  Google Scholar 

  23. Tatic-Lucic S, Tai Y-C, Wright JA, Pine J, Denison T (1993) Silicon-micromachined neurochips for in vitro studies of cultured neural networks. Proc Int Conf Solid State Sensors and Actuators, 943–946

    Google Scholar 

  24. Thomas CK, Erb DE, Grumbles M, Bunge RP (2000) Embryonic cord transplants in peripheral nerve restore skeletal muscle function. J Neurophysiol 84(1): 591–595

    PubMed  CAS  Google Scholar 

  25. Voskerician G, Shive MS, Shawgo RS, von Recum H, Anderson JM, Cima MJ, Langner R (2003) Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials 24(11): 1959–1967

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Stieglitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this chapter

Cite this chapter

Stieglitz, T. (2007). Restoration of neurological functions by neuroprosthetic technologies: future prospects and trends towards micro-, nano-, and biohybrid systems. In: Sakas, D.E., Simpson, B.A., Krames, E.S. (eds) Operative Neuromodulation. Acta Neurochirurgica Supplements, vol 97/1. Springer, Vienna. https://doi.org/10.1007/978-3-211-33079-1_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33079-1_57

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33078-4

  • Online ISBN: 978-3-211-33079-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics