Skip to main content

On Some Recent Methods for Nonlinear Partial Differential Equations

  • Conference paper

Abstract

We wish to present here some aspects of a few general methods that have been introduced recently in order to solve nonlinear partial differential equations and related problems in nonlinear analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Andréasson, A regularity property and strong L 1 convergence to equilibrium for the relativistic Boltzmann equation, preprint 21, Chalmers Univ., Göteborg, 1994.

    Google Scholar 

  2. L. Arkeryd and C. Cercignani, On the convergence of solutions of Enskog equations to solutions of the Boltzmann equation, Comm. Partial Differential Equations, 14 (1989), 1071–1090.

    Article  MathSciNet  Google Scholar 

  3. J. Ball and R. D. James, Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal., 100 (1987), 13–52.

    Article  MathSciNet  Google Scholar 

  4. C. Bardos, F. Golse, and D. Levermore, Fluid dynamics limits of kinetic equations, I, J. Statist. Phys., 63 (1991), 323–344; II, Comm. Pure Appl. Math., 46 (1993), 667–753

    Article  MathSciNet  Google Scholar 

  5. M. Bézard, Régularité L Pprécisée des moyennes dans les equations de transport, preprint.

    Google Scholar 

  6. L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsberichte der Akademie der Wisssenschaften, Vienna, 66 (1972), 275–370. (Trans.: Further studies on the thermal equilibrium of gas molecules, in Kinetic Theory, vol. 2 (S. G. Brush, ed.), Pergamon, Oxford (1966), 88–174).

    MATH  Google Scholar 

  7. L. Caffarelli, R. V. Kohn, and L. Nirenberg, On the regularity of the solutions of Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771–832.

    Article  MathSciNet  Google Scholar 

  8. T. Carleman, Acta Math., 60 (1933), 91.

    Article  MathSciNet  Google Scholar 

  9. T. Carleman, Problèmes mathématiques dans la théorie cinétique des gaz. Notes written by Carleson and Frostman, Uppsala, Almqvist and Wikselles, 1957.

    MATH  Google Scholar 

  10. C. Cercignani, The Boltzmann Equation and its Applications. Springer Verlag, Berlin and New York, 1988.

    Book  Google Scholar 

  11. G. Q. Chen, The theory of compensated compactness and the system of isentropic gas dynamics, preprint.

    Google Scholar 

  12. R. Coifman, P. L. Lions, Y. Meyer, and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9), 72 (1993), 247–286.

    MathSciNet  MATH  Google Scholar 

  13. R. Coifman, R. Rochberg, and G. Weiss, Ann. of Math. (2), 103 (1976), 611–635.

    Article  MathSciNet  Google Scholar 

  14. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83 (1977), 579–645.

    Article  MathSciNet  Google Scholar 

  15. M. G. Crandall and P. L. Lions, Hamilton-Jacobi equations in infinite dimensions, I, J. Funct. Anal., 63 (1985), 379–396; II, J. Funct. Anal., 65 (1985), 308–400; III, J. Funct. Anal., 68 (1986),214–247 ; IV, J. Funct. Anal., 90 (1990), 237–283; V, J. Funct. Anal., 97 (1991), 417–465; VI, in Evolution Equations, Control Theory and Biomathematics (Ph. Clement and G. Lumer, eds.), Lecture Notes in Pure and Appl. Math. 155, Dekker, New York, 1994: VII, to appear in J. Funct. Anal.

    Article  Google Scholar 

  16. L. Desvillettes, About the regularizing properties of the non cut-off Kac equation, preprint, 1994.

    Google Scholar 

  17. R. J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys., 91 (1983), 27–70.

    Article  MathSciNet  Google Scholar 

  18. R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. (2), 130 (1989), 312–366.

    Article  MathSciNet  Google Scholar 

  19. R. J. DiPerna and P. L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math., 62 (1989), 729–757.

    Article  MathSciNet  Google Scholar 

  20. R. J. DiPerna and P. L. Lions, Global solutions of Boltzmann’s equation and the entropy inequality, Arch. Rational Mech. Anal., 114 (1991), 47–55.

    Article  MathSciNet  Google Scholar 

  21. R. J. DiPerna, P. L. Lions, and Y. Meyer, LP-regularity of velocity averages, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 8 (1991), 271–287.

    Article  Google Scholar 

  22. M. J. Esteban and B. Perthame, On the modified Enskog equation with elastic or inelastic collisions; Models with spin, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 8 (1991), 289–398.

    Article  MathSciNet  Google Scholar 

  23. C. Fefferman and E. Stein, xP spaces of several variables, Acta Math., 228 (1972), 137–193.

    Article  Google Scholar 

  24. P. Gerard, Microlocal defect measures, Comm. Partial Differential Equations, 16 (1991), 1761–1794.

    Article  MathSciNet  Google Scholar 

  25. P. Gerard, Mesures semi-classiques et ondes de Bloch, in Séminaire EDP, 1990–1991, Ecole Polytechnique, Palaiseau, 1991.

    Google Scholar 

  26. F. Golse, P. L. Lions, B. Perthame, and R. Sentis, Regularity of the moments of the solutions of a transport equation, J. Funct. Anal., 76 (1988), 110–125.

    Article  MathSciNet  Google Scholar 

  27. F. Golse, B. Perthame, and R. Sentis, Un résultat pour les equations de transport et application au calcul de la limite de la valeur propre principale d’un opérateur de transport, C.R. Acad. Sci. Paris Série I, 301 (1985), 341–344.

    MATH  Google Scholar 

  28. H. Grad, Principles of the kinetic theory of gases, Handbuch der Physik, 12, Springer Verlag, Berlin (1958), 205–294.

    MathSciNet  Google Scholar 

  29. K. Harndache, Global existence for ‘weak solutions for the initial boundary value problems of Boltzmann equation, Arch Rational Mech Anal 119 (1992) 309–353

    Article  MathSciNet  Google Scholar 

  30. F. Helein, Regularite des applications faiblement harmoniques entre une surface et une variété riemanienne, C. R. Acad. Sci. Paris Série I, 312 (1990), 591–596.

    MATH  Google Scholar 

  31. D. Hilbert, Begründung der kinetischen Gastheorie, Math. Ann. 72 (1912), 562–577.

    Article  MathSciNet  Google Scholar 

  32. D. Hoff, Construction of solutions for compressible, isentropic Navier-Stokes equations in one space dimension with non smooth initial data, Proc. Roy. Soc. Edin-burgh Sect. A, 103 (1986), 301–315.

    Article  Google Scholar 

  33. D. Hoff, Global existence for 1D compressible, isentropic Navier-Stokes equations with large initial data, Trans. Amer. Math. Soc., 303 (1987), 169–181.

    MathSciNet  MATH  Google Scholar 

  34. D. Hoff, Global well-posedness of the Cauchy problem for non-isentropic gas dynam-ics with discontinuous initial data, J. Differential Equations, 95 (1992), 33–73.

    Article  MathSciNet  Google Scholar 

  35. R. D. James and D. Kinderlehrer, Theory of diffusionless phase transformations, Lecture Notes in Phys. 344, (M. Rascle, D. Serre, and M. Slemod, eds.), Springer Verlag, Berlin and New York, 1989.

    Google Scholar 

  36. A. V. Kazhikov, Cauchy problem for viscous gas equations, Sibirsk. Mat. Zh., 23 (1982), 60–64.

    MathSciNet  Google Scholar 

  37. A. V. Kazhikov and V. V. Shelukhin, Unique global solution with respect to time of the initial boundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273–282.

    Article  MathSciNet  Google Scholar 

  38. P. D. Lax, Hyperbolic systems of conservation laws, II, Comm. Pure Appl. Math., 10 (1957). 537–566.

    Article  MathSciNet  Google Scholar 

  39. P. D. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations J. Math. Phys. 5 (1964) 611–613.

    Article  MathSciNet  Google Scholar 

  40. P. D. Lax, Shock waves and entropy, in Contributions to Nonlinear Functional Analysis (Zarantonello, ed.), Academic Press, New York, (1973), 603–634.

    Google Scholar 

  41. P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves. CBMS-NSF Regional Conferences Series in Applied Mathematics, 11. 1973.

    Google Scholar 

  42. J. Leray, Etude de diverses equations intégrales nonlinéaires et de quelques problemes aue pose l’hydrodynamique, J. Math. Pures Appl. (9), 12 (1933). 1–82.

    MATH  Google Scholar 

  43. J. Leray, Essai sur les mouvernents plans d’un liquide visqueux que limitent des varois, J. Math. Pures Appl. (9). 13 (1934). 331–418.

    MATH  Google Scholar 

  44. J. Leray, Essai sur le mouvernent d’un liquide visqueux emplissant l’espace, Acta Math., 63 (1934), 193–248.

    Article  MathSciNet  Google Scholar 

  45. P. L. Lions, Existence globale de solutions pour les equations de Navier-Stokes compressibles isentropiques, C. R. Acad. Sci. Paris Série I, 316 (1993), 1335–1340. Compacité des solutions des equations de Navier-Stokes compressibles isentropiques, C. R. Acad. Sci. Paris Serie I, 317 (1993), 115–120. Limites incompressibles et acoustique pour des fiuides visqueux compressibles isentropiques, C. R. Acad. Sci. Paris Serie I, 317 (1993), 1197–1202.

    MATH  Google Scholar 

  46. P. L. Lions, Conditions at infinity for Boltzmann’s equation, Comm. Partial Differential Equations, 19 (1994), 335–367.

    Article  MathSciNet  Google Scholar 

  47. P. L. Lions, On Boltzmann and Landau equations, Phil. Trans. Roy. Soc. London Ser. A, 346 (1994), 191–204.

    Article  MathSciNet  Google Scholar 

  48. P. L. Lions, Compactness in Boltzmann’s equation via Fourier integral operators and applications. Parts I–III, to appear in J. Math. Kyoto Univ., 1994.

    Google Scholar 

  49. P. L. Lions, Mathematical Topics in Fluid Mechanics., to appear in Oxford Univ. Press.

    Google Scholar 

  50. P. L. Lions and T. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoamericana, 9 (1993), 553–618.

    Article  MathSciNet  Google Scholar 

  51. P. L. Lions, B. Perthame, and P. E. Souganidis, Existence and compactness of entropy solutions for the one-dimensional isentropic gas dynamics systems, to appear in Comm. Pure Appl. Math.

    Google Scholar 

  52. P. L. Lions, B. Perthame, and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc., 7 (1994), 169–191.

    Article  MathSciNet  Google Scholar 

  53. P. L. Lions, B. Perthame, and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-systems, to appear in Comm. Math. Phys.

    Google Scholar 

  54. A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer, Berlin and New York, 1984.

    Book  Google Scholar 

  55. A. Majda, Mathematical fluid dynamics: The interaction of nonlinear analysis and modern applied mathematics, in Proceedings of the AMS Centennial Symposium, August 8–12, 1988.

    Google Scholar 

  56. A. Majda, The interaction of Nonlinear Analysis and Modern Applied Mathematics, in Proc. Internat. Congress Math., Kyoto, 1990, vol. I, Springer, Berlin and New York. 1991

    Google Scholar 

  57. J. C. Maxwell, Scientific papers. Vol. 2, Cambridge Univ. Press, Cambridge, 1880 (Reprinted by Dover Publications. New York. 1965).

    MATH  Google Scholar 

  58. J. C. Maxwell, On the dynamical theory of gases, Phil. Trans. Roy. Soc. London Ser. A, 157 (1886), 49–88.

    Article  Google Scholar 

  59. S. Müller, A surprising higher integrability property of mappings with positive determinant Proc Amer Math Soc., 21 (1989) 245–248

    MathSciNet  MATH  Google Scholar 

  60. F. Murat, Compacite par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4), 5 (1978), 489–507; II, in Proceedings of the International Meeting on Recent Methods on Nonlinear Analysis (E. De Giorgi, E. Magenes, and U. Mosco, eds.), Pitagora, Bologna, 1979; III, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4), 8 (1981), 69–102.

    MathSciNet  MATH  Google Scholar 

  61. T. Nishida, Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible equation, Comm. Math. Phys., 61 (1978), 119–148.

    Article  MathSciNet  Google Scholar 

  62. D. H. Phong and E. Stein, Hilbert integrals, singular integrals and Radon transforms, Ann. of Math. (2).

    Google Scholar 

  63. D. Serre, Solutions faibles globales des equations de Navier-Stokes pour un fluide compressible, C. R. Acad. Sci. Paris Série I. 303 (1986). 629–642.

    MATH  Google Scholar 

  64. D. Serre, Sur l’equation monodimensionnelle d’un fluide visqueux, compressible et conducteur de chaleur, C. R. Acad. Sci. Paris Série I, 303 (1986), 703–706.

    MATH  Google Scholar 

  65. D. Serre, Variations de grande amplitude pour la densité d’un fluide visqueux compressible, Phys. D, 48 (1991), 113–128.

    Article  MathSciNet  Google Scholar 

  66. E. Stein, Oscillatory integrals in Fourier analysis, in Beijing Lectures in Harmonic Analysis (E. Stein, ed.), Princeton Univ. Press, Princeton, NJ (1986), 307–355.

    Google Scholar 

  67. E. Stein and G. Weiss, On the theory of HP spaces, Acta Math., 103 (1960), 25–62.

    Article  MathSciNet  Google Scholar 

  68. L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, vol. 4 (R. J. Knops, ed.), Research Notes in Math., Pitman, London, 1979.

    Google Scholar 

  69. L. Tartar, The compensated compactness method applied to systems of conservation laws, in Systems of Nonlinear Partial Differential Equations (J. M. Ball, ed.), NATO ASI Series C III, Reidel, New York, 1983.

    MATH  Google Scholar 

  70. L. Tartar, H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 115 (1990), 193–230.

    Article  MathSciNet  Google Scholar 

  71. S. Ukai and K. Asano, The Euler limit and initial layer of the nonlinear Boltzmann equation, Hokkaido Math. J., 12 (1983), 311–332.

    Article  MathSciNet  Google Scholar 

  72. B. Wennberg, Regularity estimates for the Boltzmann equation, preprint 2, 1994, Chalmers Univ., Goteborg.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäser Verlag, Basel, Switzerland

About this paper

Cite this paper

Lions, PL. (1995). On Some Recent Methods for Nonlinear Partial Differential Equations. In: Chatterji, S.D. (eds) Proceedings of the International Congress of Mathematicians. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-9078-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9078-6_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9897-3

  • Online ISBN: 978-3-0348-9078-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics