Skip to main content

Seismic Velocities and Anisotropy of the Lower Continental Crust: A Review

  • Chapter
Seismic Exploration of the Deep Continental Crust

Part of the book series: Pure and Applied Geophysics(PAGEOPH) ((PTV))

Abstract

Seismic anisotropy is often neglected in seismic studies of the earth’s crust. Since anisotropy is a common property of many typically deep crustal rocks, its potential contribution to solving questions of the deep crust is evaluated. The anisotropic seismic velocities obtained from laboratory measurements can be verified by computations based on the elastic constants and on numerical data pertaining to the texture of rock-forming minerals. For typical lower crustal rocks the influence of layering is significantly less important than the influence of rock texture. Surprisingly, most natural lower crustal rocks show a hexagonal type of anisotropy. Maximum anisotropy is observed for rocks with a high content of aligned mica. It seems possible to distinguish between layered intrusives and metasediments on the basis of in situ measurements of anisotropy, which can thus be used to validate different scenarios of crustal evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleksandrov, K. S., and Ryzhova, T. V. (1961), The Elastic Properties of Rock forming Minerals II: Layered Silicates, lzv. Acad. Sci. USSR, Geophys. Phys. Solid Earth, 1165–1168.

    Google Scholar 

  • Aleksandrov, K. S., Alchikov, U. V., Belikov, B. P., Zaslavskii, B. I., and Krupnyi, A.I. (1974), Velocities of Elastic Waves in Minerals at Atmospheric Pressure and Increasing Precision of Elastic Constants by Means of EVM (in Russian), Izv. Acad. Sci. USSR. Geol. Ser. 10, 15–24.

    Google Scholar 

  • Arts, R. J., Rasolofosaon, P. N. J., and Zinszner, B. (1996), Experimental and theoretical tools for characterizing anisotropy due to mechanical defects in rocks under varying pore and confining pressures. In Seismic Anisotropy (eds. S. E. Fjaer, R. M. Holt and J. S. Rathore) (Society of Exploration Geophysicists, Tulsa, OK 1996) pp. 384–432.

    Chapter  Google Scholar 

  • Babuska, V. (1972), Elasticity and Anisotropy of Dunite and Bronzitite, J. Geophys. Res. 77, 35, 6955--6965.

    Article  Google Scholar 

  • Backus, G. E. (1962), Long-wave Elastic Anisotropy Produced by Horizontal Layering, J. Geophys. Res. 67, 4427–4440.

    Article  Google Scholar 

  • Barruol, G. (1993), Pétrophysique de la croûte inférieure. Rôle de l’anisotropie sismique sur la réflectivité et le déphasage des ondes S, Ph.D. Thesis, Univ. des Sciences et Techniques du Languedoc, Montpellier, 271 pp.

    Google Scholar 

  • Barruol, G. Mainprice, D., Kern, H., DE St. Blanquat, M., and Compte, P. (1992), 3-D Seismic Study of a Ductile Shear Zone from Laboratory and Petrofabric Data (Saint Barthelemy Massif, Northern Pyrenees, France), Terra Nova 4 (I), 63–76.

    Article  Google Scholar 

  • Barruol, G., and Mainprice, D. (1993), 3-D Seismic Velocities Calculated from Lattice preferred Orientation and Reflectivity of a Lower Crustal Section: Examples of the Val Sesia Section (Ivrea Zone, Northern Italy), Geophys. J. Int. 115 (3), 1169–1188.

    Article  Google Scholar 

  • Barruol, G., and Kern, H. (1996), Seismic anisotropy and shear-wave splitting in lower-crustal and upper-mantle rocks from the Ivrea Zone; experimental and calculated data. In Dynamics of the Subcontinental Mantle, from Seismic Anisotropy to Mountain Building (eds. Mainprice, D. and Vauchez, A.), Phys. Earth Planet. Int. 95, 3–4, 175–194.

    Google Scholar 

  • Belikov, B. P., Aleksandrov, K. S., and Ryzhova, T. V. (1970), Elastic Properties of Rock forming Minerals and Rocks; with Appended Tables of the Elastic Constants of the Principal Types of Rocks (in Russian), Izd. Nauka (Akad. Nauk SSSR, Inst. Geol. Rud. Mestorozhd. Petrogr. Mineral. Geokhim.Sib. Otd., Inst. Fiz.), 276.

    Google Scholar 

  • Bertolani, M. (1968), La petrografia della Valle Strona (Alpi occidentali italiane), Schweiz. Min. Petrogr. Mitt. 48, 695–732.

    Google Scholar 

  • Birch, F. (1960), The Velocity of Compressional Waves in Rocks to 10 kilobars; Part 1, J. Geophys. Res. 65, 1083–1102.

    Article  Google Scholar 

  • Birch, F. (1961), The Velocity of Compressional Waves in Rocks to 10 kilobars; Part 2, J. Geophys. Res. 66, 2199–2224.

    Article  Google Scholar 

  • Bohlen, T., Rabbel, W., Weiss, T., Siegesmund, S., and Pohl, M. (1999), Recovering Shear Wave Anisotropy of the Lower Crust: The Influence of Systematic Errors of Traveltime Inversion, Pure appl. geophys. 156, 123–138.

    Article  Google Scholar 

  • Bunge, H. J., Siegesmund, S., Skrotzki, W., and Weber, K., Textures of Geological Materials (DGM Informationsgesellschaft Verlag 1994) 399 pp.

    Google Scholar 

  • Burlini, L. (1994), A Model for the Calculation of the Seismic Properties of Geologic Units, Surv. in Geoph. 15, 593–617.

    Article  Google Scholar 

  • Burlini, L., and Fountain, D. M. (1993), Seismic Anisotropy of Metapelites from the Ivrea-Verbano Zone and Serie dei Laghi (Northern Italy), Phys. Earth Planet. Int. 78 (3–4). 301–317.

    Article  Google Scholar 

  • BÜTtgenbach, B. (1990), Uber die Schärfe von Fehlerabschätzungen bei der numerischen Lösung von Randwertproblemen durch Differenzenverfahren, Ph.D. Thesis, Tech. Univ. Aachen.

    Google Scholar 

  • Carbonell, R., and Smithson, S. B. (1991), Large-scale Anisotropy within the Crust in the Basin and Range Province, Geology 19, 698–701.

    Article  Google Scholar 

  • Christensen, N. I., and Crosson, R. S. (1968), Seismic Anisotropy in the Upper Mantle, Tectonophysics 6 (2), 93–107.

    Article  Google Scholar 

  • Dornbusch, J. (1995), Wage-, Mikrostruktur-and Texturuntersuchungen an Hoch temperatur-Scherzonen in granulitfaziellen Metabasiten der Ivrea-Zone, Geotekt. Forsch. 83, 94 pp.

    Google Scholar 

  • Fountain, D. M., and Christensen, N. I. (1989), Composition of the continental crust and upper mantle; a review. In Geophysical Framework of the Continental United States (eds. Pakiser, L. C. and Mooney, W. D.) (Memoir, Geological Society of America, 172) pp. 711–742.

    Google Scholar 

  • Frisillo, A. L., and Barsch, G. R. (1972), Measurement of Single-crystal Elastic Constants of Bronzite as a Function of Pressure and Temperature, J. Geophys. Res. 77, 6360–6368.

    Article  Google Scholar 

  • Gajewski, D., Holbrook, W. S., and Prodehl, C. (1987), A Three-dimensional Crustal Model of Southwest Germany Derived from Seismic Refraction Data, Tectonophysics 142 (1), 49–70.

    Article  Google Scholar 

  • Garuti, G., Rivalenti, G., Rossi, A., and Sinigoi, S. (1979), Mineral Equilibria as Geotectonic Indicators in the Ultramafics and Related Rocks of the Ivrea-Verbano Basic Complex (Italian Western Alps): Pyroxenes and Olivine, Proc. 2nd Symp. Ivrea-Verbano Mem. Soc. Geol. Ital. 33, 147–160.

    Google Scholar 

  • Holbrook, W. S., Mooney, W. D., and Christensen, N. I., The seismic velocity structure of the deep continental crust. In The Continental Lower Crust (eds. Fountain, D. M., Arculus, R. and Kay, R. W.), Developments in Geotectonics 23 (Elsevier, Amsterdam 1992) pp. 1–34.

    Google Scholar 

  • Jahns, E., Rabbel, W., and Siegesmund, S. (1996), Quantified Seismic Anisotropy at Different Scales: A Case Study from the KTB Crustal Segment, Zeitschrift für Geologische Wissenschaften 24, 729–740.

    Google Scholar 

  • Jech, J. (1991), Computation of Elastic Parameters of Anisotropic Medium from Traveltimes of Quasi-compressional Waves, Phys. Earth Planet. Int. 66, 153–159.

    Article  Google Scholar 

  • Jones, T., and Nur, A. (1984), The Nature of Seismic Reflections from Deep Crustal Fault Zones, J. Geophys. Res. 89, 3153–3171.

    Article  Google Scholar 

  • Kern, H., and Tubia, J. M. (1993), Pressure and Temperature Dependence of P- and S-wave Velocities, Seismic Anisotropy and Density of Sheared Rocks from the Sierra Alpujata Massif (Ronda Peridotites, Southern Spain), Earth Planet. Sci. Lett. 119 (1–2), 191–205.

    Article  Google Scholar 

  • Klima, K. (1973), The Computation of the Elastic Constants of an Anisotropic Medium from the Velocities of Body Wares, Stud. Geoph. Geodet. 17, 115–132.

    Article  Google Scholar 

  • Klima, K., and Kluhanek, O. (1968), Quantitative Correlation between Preferred Orientation of Grains and Elastic Anisotropy of Marbel, IEEE Geosci. Electronics, GE-6, 139 pp.

    Google Scholar 

  • Kumazawa, M., and Anderson, O.L. (1969), Elastic Moduli, Pressure Derivatives and Temperature Derivatives of Single-crystal Olivine and Single-crystal Forsterite, J. Geophys. Res. 74, 5311–5320.

    Article  Google Scholar 

  • Levien, L., Weidner, D. J., and Prewitt, C. T. (1979), Elasticity of Diopside, Phys. and Chem. Of Min. 4 (2), 105–113.

    Article  Google Scholar 

  • Löschen, E., Nolte, B., and Fuchs, K. (1990), Shear-wave Evidence for an Anisotropic Lower Crust beneath the Black Forest, Southwest Germany, Tectonophysics 173, 483–493.

    Article  Google Scholar 

  • Löschen, E., Nicolich, R., Cernobori, L., Fuchs, K., Kern, H., Kruhl, J., Persoglia, S., Romanelli, M., Schenk, V., Siegesmund, S., and Tortorici, L. (1992), A Seismic Reflection-refraction Experiment across the Exposed Lower crust in Calabria (Southern Italy): First Results, Terra Nova 4, 77–86.

    Article  Google Scholar 

  • Mainprice, D., and Humbert, M. (1993), Methods of calculating petrophysical properties from lattice-preferred orientation data. In Seismic Properties of Crustal and Mantle Rocks; Laboratory Measurements and Theotetical Calculations (ed. Burlini, L.), Surveys in Geophysics 15 (5), 575–592.

    Google Scholar 

  • Manghnani, M. H., Ramananantoandro, R., and Clark, S. P. (1974), Compressional and Shear-wave Velocities in Granulite Facies Rocks and Eclogites to 10 kb, J. Geophys. Res. 79 (35), 5427–5446.

    Article  Google Scholar 

  • Meissner, R. (1967), Zum Aufbau der Erdkruste Ergebnisse der Weitwinkelmessungen im bayrischen Molassebecken, Gerl. Beitr. Geophys. 76, 241–254.

    Google Scholar 

  • Pohl, M., Wenzel, F., Weiss, T., Siegesmund, S., Bohlen, T., and Rabbel, W. (1999), Realistic Models of Anisotropic Laminated Lower Crust, Pure appl. geophys. 156, 139–155.

    Article  Google Scholar 

  • Popp, T., and Kern, H. (1994), The Influence of Dry and Water-saturated Cracks on Seismic Velocities of Crustal Rocks A Comparison of Experimental Data with Theoretical Model, Surveys in Geophysics 15, 443–465.

    Article  Google Scholar 

  • Quick, J. E., Sinigoi, S., and Mayer, A. (1994), Emplacement Dynamics of a Large Mafic Intrusion in the Lower Crust, Ivrea-Verbano Zone, Northern Italy, J. Geophys. Res. 11, 21,559–21,573.

    Google Scholar 

  • Rabbel, W., and Löschen, E. (1996). Shear-wave Anisotropy of Laminated Lower Crust at the Urach Geothermal Anomaly, Tectonophysics 264, 219–233.

    Article  Google Scholar 

  • Rabbel, W., Siegesmund, S., Weiss, T., Pohl, M. and Bohlen, T. (1998), Shear-wave Anisotropy of Laminated Lower Crust beneath Urach (SW Germany) -A Comparison with Exposed Lower Crustal Sections, Tectonophysics 298, 337–356.

    Article  Google Scholar 

  • Reston, T. J. (1987), Spatial interference, reflection character and the structure of the lower crust under extension; results 2-D seismic modelling. In The Lower Continental Crust (Annales Geophysicae, Series B: Terrestrial and Planetary Physics 5(4)) pp. 339–347.

    Google Scholar 

  • Rivalenti, G., Garuti, G., and Rossi, A. (1975), The Origin of the Ivrea-Verbano Basic Formation (Western Italian Alps) Whole Rock Geochemistry, Boll. Soc. Geol. Ital. 94, 1149–1186.

    Google Scholar 

  • Rivalenti, G., Garuti, G., Rossi, A., Siena, F., and Sinigoi, S. (1981), Existence of Different Peridotite Types and of a Layered Igneous Complex in the Ivrea Zone of the Western Alps, J. Petrology 22 (1), 127–153.

    Google Scholar 

  • Rivalenti, G., Rossi, A., Siena, F., and Sinigoi, S. (1984), The Layered Series of the Ivrea Verbano Igneous Complex, Western Alps, Italy, Tscherm. Mineral. Petrogr. Mitt. 33, 77–99.

    Article  Google Scholar 

  • Rudnick, R. L., and Fountain, D. M. (1995), Nature and Composition of the Continental Crust: A Lower Crustal Perspective, Rev. Geophys. 33 (3), 267–309.

    Article  Google Scholar 

  • Rutter, E. H., Brodie, K. H., and Evans, P. J. (1993), Structural Geometry, Lower Crustal Magmatic Underplating and Lithospheric Stretching in the Ivrea-Verbano Zone, Northern Italy, J. Struct. Geol. 15 (3–5), 647–662.

    Article  Google Scholar 

  • Schenk, V. (1980), U-Pb and Rb-Sr Radiometric Dates and their Correlation with Metamorphic Events in the Granulite-facies Basement of the Serre, Southern Calabria (Italy), Contrib. Mineral. Petrol. 73, 23–38.

    Article  Google Scholar 

  • Schenk, V. (1984), Petrology of Felsic Granulites, Metapelites, Metabasics, Ultramafics and Metacarbonates from Southern Calabria (Italy): Prograde Metamorphism, Uplift and Cooling of a Former Lower Crust, J. Petrol. 25, 255–298.

    Google Scholar 

  • Schön, J. H., Physical Properties of Rocks: Fundamentals and Principles of Petrophysics (Pergamon Press 1996).

    Google Scholar 

  • Schönberg, M. E., and Muir, F. (1989), A Calculus for Finely Layered Anisotropie Media, Geophys. 54 (5), 581–589.

    Article  Google Scholar 

  • Seront, B., Mainprice, D. M., and Christensen, N. I. (1993), A Determination of the Three-dimensional Seismic Properties of Anorthosite; Comparison between Values Calculated from the Petrofabric and Direct Laboratory Measurements, J. Geophys. Res. 98 (B), 2209–2221.

    Article  Google Scholar 

  • Shapiro, S. A., and Hubral, P. (1996), Elastic Waves in Finely Layered Sediments: The Equivalent Medium and Generalized O’Doherty-Anstey Formulas, Geophys. 61 (5), 1282–1300.

    Article  Google Scholar 

  • Siegesmund, S. (1996), The Significance of Rock Fabrics for the Geological Interpretation of Geophysical Anisotropies, Geotekt. Forsch. 85, 1–123.

    Google Scholar 

  • Siegesmund, S., Takeshita, T., and Kern, H. (1989), Anisotropy of V r and V, in an Amphibolite of the Deeper Crust and its Relationship to the Mineralogical Microstructural and Textural Characteristics of the Rock, Tectonophysics 157, 25–38.

    Article  Google Scholar 

  • Siegesmund, S., Fritsche, M., and Braun, G. (1991), Reflectivity caused by texture-induced anisotropy in mylonites. In Continental Lithosphere; Deep Seismic Reflections (eds. Meissner, R. O., Brown, L. D., Duerbaum, H. J., Franke, W., Fuchs, K. and Seifert, F.), Geodynamics Series 22, 291–298.

    Chapter  Google Scholar 

  • Siegesmund, S., and Dahms, M., Fabric-controlled anisotropy of elastic, magnetic and thermal properties. In Textures of Geological Materials (eds. Bunge, H. J., Siegesmund, S., Skrotzki, W. and Weber, K.) (DGM Informationsgesellschaft Verlag 1994) pp. 353–379.

    Google Scholar 

  • Siegesmund, S., Helmig, K., and Kruse, R. (1994), Complete Texture Analysis of a Deformed Amphibolite: Comparison between Neutron Diffraction and U-stage Data, J. Struct. Geol. 16, 131–142.

    Article  Google Scholar 

  • Siegesmund, S., Kruhl, J. H., and Lüschen, E. (1996), Petrophysical and Seismic Features of the Exposed Lower Continental Crust in Calabria (Italy): Field Observation versus Modelling, Geotekt. Forsch. 85, 125–163.

    Google Scholar 

  • Tobhill, Siegesmund, S., and Bass, J. D. (1999), Elasticity of Cordierite, Phys. Chem. Min. 26, 333–343.

    Article  Google Scholar 

  • Vaughan, M. T., and Weidner, D. J. (1978), The Relationship of Elasticity and Crystal Structure in Andalusite and Sillimanite, Phys. Chem. Min. 3, 133–144.

    Article  Google Scholar 

  • Voigt, W., Lehrbuch der Kristallphysik (Teubner, Leipzig 1928).

    Google Scholar 

  • Voshage, H., Hofmann, A. W., Mazzucchelli, M., Rivalenti, G., Sinigoi, S., Raczek, I., and Demarchi, G. (1990), Isotopic Evidence from the Ivrea Zone for a Hybrid Lower Crust Formed by Magmatic Underplating, Nature 347, 731–736.

    Article  Google Scholar 

  • Weiss, T. (1998), Gefügeanisotropie and ihre Auswirkung auf das seismische Erscheinungsbild: Fallbeispiele aus der Lithosphäre Silddeutschlands, Geot. Forschungen 91, 1–156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Weiss, T., Siegesmund, S., Rabbel, W., Bohlen, T., Pohl, M. (1999). Seismic Velocities and Anisotropy of the Lower Continental Crust: A Review. In: Gajewski, D., Rabbel, W. (eds) Seismic Exploration of the Deep Continental Crust. Pure and Applied Geophysics(PAGEOPH). Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8670-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8670-3_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6210-2

  • Online ISBN: 978-3-0348-8670-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics