Skip to main content

A Flexible Architecture for Key Performance Indicators Assessment in Smart Cities

  • Conference paper
  • First Online:
Book cover Software Architecture (ECSA 2020)

Abstract

The concept of smart and sustainable city has been on the agenda for the last decade. Smart governance is about the use of innovation for supporting enhanced decision making and planning to make a city smart, by leveraging on Key Performance Indicators (KPIs) as procedural tools. However, developing processes and instruments able to evaluate smart cities is still a challenging task, due to the rigidity showed by the existing frameworks in the definition of KPIs and modeling of the subjects to be evaluated. Web-based platforms, spreadsheets or even Cloud-based applications offer limited flexibility, if the stakeholder is interested not only in using but also in defining the pieces of the puzzle to be composed. In this paper we present a flexible architecture supporting a model-driven approach for the KPIs assessment in smart cities. It identifies both required and optional components and functionalities needed for realizing the automatic KPIs assessment, while showing flexibility points allowing for different specification of the architecture, thus of the overall methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://sustainabledevelopment.un.org/sdgs.

  2. 2.

    Key Performance Indicators in Power Pivot at https://bit.ly/37EFR9r.

  3. 3.

    Project available at: https://github.com/gssi/SmartCityModeling.git.

  4. 4.

    https://www.eclipse.org/modeling/emf/.

  5. 5.

    https://www.eclipse.org/acceleo/.

  6. 6.

    For the interested readers it can be found at https://bit.ly/3bqbqG2.

  7. 7.

    https://theia-ide.org.

References

  1. Mutiara, D., Yuniarti, S., Pratama, B.: Smart governance for smart city. IOP Conf. Ser. Earth Environ. Sci. 126, 012–073 (2018)

    Article  Google Scholar 

  2. Directorate-General for Environment (European Commission): Intrasoft International, University of the West of England (UWE). Science Communication Unit. Indicators for sustainable cities, April 2018

    Google Scholar 

  3. European Commission: Europe 2020 A European strategy for smart, sustainable and inclusive growth, March 2010

    Google Scholar 

  4. International Telecommunication Union (ITU): Collection Methodology for Key Performance Indicators for Smart Sustainable Cities (2017). https://bit.ly/2SkSZfi

  5. Ferro, E., Caroleo, B., Leo, M., Osella M., Pautasso, E.: The role of ICT in smart city governance. In: International Conference for e-Democracy and Open Government (2013)

    Google Scholar 

  6. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice, 2nd edn. Morgan & Claypool Publishers, San Rafael (2017)

    Google Scholar 

  7. Mohagheghi, P., Aagedal, J.: Evaluating quality in model-driven engineering. In: International Workshop on Modeling in Software Engineering, p. 6. IEEE (2007)

    Google Scholar 

  8. da Silva, W.M., Alvaro, A., Tomas, G.H.R.P., Afonso, R.A., Dias, K.L., Garcia, V.C.: Smart cities software architectures: a survey. In: 28th Annual ACM Symposium on Applied Computing (SAC), pp. 1722–1727. ACM (2013)

    Google Scholar 

  9. Abu-Matar, M., Mizouni, R.: Variability modeling for smart city reference architectures. In: IEEE International Smart Cities Conference, pp. 1–8 (2018)

    Google Scholar 

  10. Voronin, D., Shevchenko, V., Chengar, O., Mashchenko, E.: Conceptual big data processing model for the tasks of smart cities environmental monitoring. In: Alexandrov, D.A., Boukhanovsky, A.V., Chugunov, A.V., Kabanov, Y., Koltsova, O., Musabirov, I. (eds.) DTGS 2019. CCIS, vol. 1038, pp. 212–222. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37858-5_17

    Chapter  Google Scholar 

  11. Wenge, R., Zhang, X., Dave, C., Chao, L., Hao, S.: Smart city architecture: A technology guide for implementation and design challenges. China Commun. 11(3), 56–69 (2014)

    Article  Google Scholar 

  12. Simmhan, Y., Ravindra, P., Chaturvedi, S., Hegde, M., Ballamajalu, R.: Towards a data-driven IoT software architecture for smart city utilities. Softw. Pract. Exp. 48(7), 1390–1416 (2018)

    Article  Google Scholar 

  13. Santana, E.F.Z., Chaves, A.P., Gerosa, M.A., Kon, F., Milojicic, D.S.: Software platforms for smart cities: concepts, requirements, challenges, and a unified reference architecture. ACM Comput. Surv. 50(6), 1–37 (2017)

    Article  Google Scholar 

  14. Sinaeepourfard, A., Petersen, S.A., Ahlers, D.: D2C-SM: designing a distributed-to-centralized software management architecture for smart cities. In: Pappas, I.O., Mikalef, P., Dwivedi, Y.K., Jaccheri, L., Krogstie, J., Mäntymäki, M. (eds.) I3E 2019. LNCS, vol. 11701, pp. 329–341. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29374-1_27

    Chapter  Google Scholar 

  15. Bettini, L., Di Ruscio, D., Iovino, L., Pierantonio, A.: Quality-driven detection and resolution of metamodel smells. IEEE Access 7, 16364–16376 (2019)

    Article  Google Scholar 

  16. Di Ruscio, D., Iovino, L., Pierantonio, A.: What is needed for managing co-evolution in MDE? In: International Workshop on Model Comparison in Practice, pp. 30–38. ACM (2011)

    Google Scholar 

  17. Brottier, E., Fleurey, F., Steel, J., Baudry B., Traon, Y.L.: Metamodel-based test generation for model transformations: an algorithm and a tool. In: International Symposium on Software Reliability Engineering, pp. 85–94 (2006)

    Google Scholar 

  18. Kolovos, D.S., Paige, R.F., Kelly, T., Polack, F.A.: Requirements for domain-specific languages. In: Workshop on Domain-Specific Program Development (2006)

    Google Scholar 

  19. Veisi, P., Stroulia, E.: AHL: model-driven engineering of android applications with BLE peripherals. In: Aïmeur, E., Ruhi, U., Weiss, M. (eds.) MCETECH 2017. LNBIP, vol. 289, pp. 56–74. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59041-7_4

    Chapter  Google Scholar 

  20. Viyović, V., Maksimović, M., Perisić, B.: Sirius: a rapid development of DSM graphical editor. In: International Conference on Intelligent Engineering Systems (INES), pp. 233–238 (2014)

    Google Scholar 

  21. Bettini, L.: Implementing domain-specific languages with Xtext and Xtend. Packt Publishing, Birmingham (2016)

    Google Scholar 

  22. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon object language (EOL). In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142. Springer, Heidelberg (2006). https://doi.org/10.1007/11787044_11

    Chapter  Google Scholar 

  23. Basciani, F., Di Rocco, J., Di Ruscio, D., Di Salle, A., Iovino, L., Pierantonio, A.: MDEForge: an extensible web-based modeling platform. In: CloudMDE@MoDELS, pp. 66–75 (2014)

    Google Scholar 

  24. Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Architectures. Addison-Wesley, Boston (2002)

    Google Scholar 

  25. Rose, L.M., Kolovos, D.S., Paige, R.F.: EuGENia live: a flexible graphical modelling tool. In: Extreme Modeling Workshop, pp. 15–20 (2012)

    Google Scholar 

  26. Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio, A.: Collaborative repositories in model-driven engineering. IEEE Softw. 32, 28–34 (2015)

    Article  Google Scholar 

  27. Basciani, F., Rocco, J.D., Ruscio, D.D., Iovino, L., Pierantonio, A.: Model repositories: will they become reality? In: CloudMDE@MoDELS (2015)

    Google Scholar 

  28. Jézéquel, J.-M., Barais, O., Fleurey, F.: Model driven language engineering with Kermeta. In: Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491, pp. 201–221. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18023-1_5

    Chapter  Google Scholar 

  29. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Model-based language engineering with EMFText. In: Lämmel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2011. LNCS, vol. 7680, pp. 322–345. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35992-7_9

    Chapter  Google Scholar 

  30. Strauch, C., Sites, U.-L.S., Kriha, W.: NoSQL databases. Lect. Notes Stuttg. Media Univ. 20, 24 (2011)

    Google Scholar 

Download references

Acknowledgment

This work was partially supported by the Centre for Urban Informatics and Modelling, National Project, GSSI as well as by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina De Sanctis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Sanctis, M., Iovino, L., Rossi, M.T., Wimmer, M. (2020). A Flexible Architecture for Key Performance Indicators Assessment in Smart Cities. In: Jansen, A., Malavolta, I., Muccini, H., Ozkaya, I., Zimmermann, O. (eds) Software Architecture. ECSA 2020. Lecture Notes in Computer Science(), vol 12292. Springer, Cham. https://doi.org/10.1007/978-3-030-58923-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58923-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58922-6

  • Online ISBN: 978-3-030-58923-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics