Skip to main content

PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12365))

Included in the following conference series:

Abstract

Lifelong learning has attracted much attention, but existing works still struggle to fight catastrophic forgetting and accumulate knowledge over long stretches of incremental learning. In this work, we propose PODNet, a model inspired by representation learning. By carefully balancing the compromise between remembering the old classes and learning new ones, PODNet fights catastrophic forgetting, even over very long runs of small incremental tasks – a setting so far unexplored by current works. PODNet innovates on existing art with an efficient spatial-based distillation-loss applied throughout the model and a representation comprising multiple proxy vectors for each class. We validate those innovations thoroughly, comparing PODNet with three state-of-the-art models on three datasets: CIFAR100, ImageNet100, and ImageNet1000. Our results showcase a significant advantage of PODNet over existing art, with accuracy gains of 12.10, 6.51, and 2.85 percentage points, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code is available at: github.com/arthurdouillard/incremental_learning.pytorch.

References

  1. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: learning what (not) to forget. In: Proceedings of the IEEE European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  2. Allen, K., Shelhamer, E., Shin, H., Tenenbaum, J.: Infinite mixture prototypes for few-shot learning. In: International Conference on Machine Learning (ICML) (2019)

    Google Scholar 

  3. Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: Proceedings of the IEEE European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009)

    Google Scholar 

  5. Dhar, P., Singh, R.V., Peng, K.C., Wu, Z., Chellappa, R.: Learning without memorizing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  6. Fernando, C., et al.: PathNet: evolution channels gradient descent in super neural networks. arXiv preprint library (2017)

    Google Scholar 

  7. French, R.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3(4), 128–135 (1999)

    Article  Google Scholar 

  8. Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  9. Goldberger, J., Hinton, G.E., Roweis, S.T., Salakhutdinov, R.R.: Neighbourhood components analysis. In: Advances in Neural Information Processing Systems (NeurIPS) (2005)

    Google Scholar 

  10. Golkar, S., Kagan, M., Cho, K.: Continual learning via neural pruning. In: Advances in Neural Information Processing Systems (NeurIPS), Neuro AI Workshop (2019)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  12. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: Advances in Neural Information Processing Systems (NeurIPS), Deep Learning and Representation Learning Workshop (2015)

    Google Scholar 

  13. Hou, S., Pan, X., Change Loy, C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  14. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Proceedings of the IEEE European Conference on Computer Vision (ECCV) (2016)

    Google Scholar 

  15. Kemker, R., Kanan, C.: FearNet: Brain-inspired model for incremental learning. In: Proceedings of the International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  16. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. In: Proceedings of the National Academy of Sciences (2017)

    Google Scholar 

  17. Komodakis, N., Zagoruyko, S.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: Proceedings of the International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  18. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report (2009)

    Google Scholar 

  19. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. Object Categorization: Computer and Human Vision Perspectives. Cambridge University Press (2006)

    Google Scholar 

  20. Li, X., Zhou, Y., Wu, T., Socher, R., Xiong, C.: Learn to grow: a continual structure learning framework for overcoming catastrophic forgetting (2019)

    Google Scholar 

  21. Li, Z., Hoiem, D.: Learning without forgetting. In: Proceedings of the IEEE European Conference on Computer Vision (ECCV) (2016)

    Google Scholar 

  22. Lomonaco, V., Maltoni, D.: CORe50: a new dataset and benchmark for continuous object recognition. In: Annual Conference on Robot Learning (2017)

    Google Scholar 

  23. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems (NeurIPS) (2017)

    Google Scholar 

  24. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (1999)

    Google Scholar 

  25. Luo, C., Zhan, J., Xue, X., Wang, L., Ren, R., Yang, Q.: Cosine normalization: Using cosine similarity instead of dot product in neural networks. In: International Conference on Artificial Neural Networks (2018)

    Google Scholar 

  26. Movshovitz-Attias, Y., Toshev, A., Leung, T.K., Ioffe, S., Singh, S.: No fuss distance metric learning using proxies. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  27. Paszke, A., et al.: Automatic differentiation in PyTorch. In: Advances in Neural Information Processing Systems (NeurIPS), Autodiff Workshop (2017)

    Google Scholar 

  28. Qi, H., Brown, M., Lowe, D.G.: Low-shot learning with imprinted weights. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  29. Qian, Q., Shang, L., Sun, B., Hu, J., Li, H., Jin, R.: SoftTriple loss: deep metric learning without triplet sampling. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  30. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  31. Robins, A.: Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Sci. 7, 123–146 (1995)

    Article  Google Scholar 

  32. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  33. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay. In: Advances in Neural Information Processing Systems (NeurIPS) (2017)

    Google Scholar 

  34. Thrun, S.: Lifelong learning algorithms. In: Thrun, S., Pratt, L. (eds.) Learning to Learn, pp. 181–209. Springer, Boston, MA (1998). https://doi.org/10.1007/978-1-4615-5529-2_8

    Chapter  MATH  Google Scholar 

  35. Wu, Y., et al.: Large scale incremental learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  36. Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with dynamically expandable networks. In: Proceedings of the International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  37. Zhou, P., Mai, L., Zhang, J., Xu, N., Wu, Z., Davis, L.S.: M2KD: multi-model and multi-level knowledge distillation for incremental learning. arXiv preprint library (2019)

    Google Scholar 

Download references

Acknowledgement

E. Valle is funded by FAPESP grant 2019/05018-1 and CNPq grants 424958/2016-3 and 311905/2017-0. This work was performed using HPC resources from GENCI–IDRIS (Grant 2019-AD011011588). We also wish to thanks Estelle Thou for the helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Douillard .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 217 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Douillard, A., Cord, M., Ollion, C., Robert, T., Valle, E. (2020). PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12365. Springer, Cham. https://doi.org/10.1007/978-3-030-58565-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58565-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58564-8

  • Online ISBN: 978-3-030-58565-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics