Skip to main content

Complex Diffusion in Bacteria

  • Chapter
  • First Online:
Physical Microbiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1267))

Abstract

Diffusion within bacteria is often thought of as a “simple” random process by which molecules collide and interact with each other. New research however shows that this is far from the truth. Here we shed light on the complexity and importance of diffusion in bacteria, illustrating the similarities and differences of diffusive behaviors of molecules within different compartments of bacterial cells. We first describe common methodologies used to probe diffusion and the associated models and analyses. We then discuss distinct diffusive behaviors of molecules within different bacterial cellular compartments, highlighting the influence of metabolism, size, crowding, charge, binding, and more. We also explicitly discuss where further research and a united understanding of what dictates diffusive behaviors across the different compartments of the cell are required, pointing out new research avenues to pursue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci 99:12651–12656

    CAS  PubMed  Google Scholar 

  • Bakshi S, Siryaporn A, Goulian M, Weisshaar JC (2012) Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol Microbiol 85:21–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bakshi S, Dalrymple RM, Li W, Choi H, Weisshaar JC (2013) Partitioning of RNA polymerase activity in live Escherichia coli from analysis of single-molecule diffusive trajectories. Biophys J 105:2676–2686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balakrishnan V (1985) Anomalous diffusion in one dimension. Phys A Stat Mech Appl 132:569–580

    Google Scholar 

  • Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V, Stefani FD, Elf J, Hell SW (2017) Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355:606–612

    CAS  PubMed  Google Scholar 

  • Beilharz K, van Raaphorst R, Kjos M, Veening J-W, Pettinari MJ (2015) Red fluorescent proteins for gene expression and protein localization studies in streptococcus pneumoniae and efficient transformation with DNA assembled via the Gibson assembly method. Appl Environ Microbiol 81:7244–7252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bettridge K, Verma S, Weng X, Adhya S, Xiao J (2019) Single molecule tracking reveals the role of transitory dynamics of nucleoid-associated protein HU in organizing the bacterial chromosome. BioRxiv 181:2019.12.31.725226

    Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    CAS  PubMed  Google Scholar 

  • Bisson-Filho AW, Hsu Y-P, Squyres GR, Kuru E, Wu F, Jukes C, Sun Y, Dekker C, Holden S, VanNieuwenhze MS, Brun YV, Garner EC (2017) Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355:739–743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bohrer CH, Roberts E (2016) A biophysical model of supercoiling dependent transcription predicts a structural aspect to gene regulation. BMC Biophys 9:1

    Google Scholar 

  • Bohrer CH, Bettridge K, Xiao J (2017) Reduction of confinement error in single-molecule tracking in live bacterial cells using SPICER. Biophys J 112:568–574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolhuis A, Mathers JE, Thomas JD, Barrett CM, Robinson C (2001) TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli. J Biol Chem 276:20213–20219

    CAS  PubMed  Google Scholar 

  • Brass JM, Higgins CF, Foley M, Rugman PA, Birmingham J, Garland PB (1986) Lateral diffusion of proteins in the periplasm of Escherichia coli. J Bacteriol 165:787–795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Camsund D, Lawson MJ, Larsson J, Jones D, Zikrin S, Fange D, Elf J (2020) Time-resolved imaging-based CRISPRi screening. Nat Methods 17:86–92

    CAS  PubMed  Google Scholar 

  • Cayley S, Lewis BA, Guttman HJ, Record MT Jr (1991) Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity: implications for protein-DNA interactions in vivo. J Mol Biol 222:281–300

    CAS  PubMed  Google Scholar 

  • Chichili GR, Rodgers W (2009) Cytoskeleton-membrane interactions in membrane raft structure. Cell Mol Life Sci CMLS 66:2319–2328

    CAS  PubMed  Google Scholar 

  • Cho S-H, Szewczyk J, Pesavento C, Zietek M, Banzhaf M, Roszczenko P, Asmar A, Laloux G, Hov A-K, Leverrier P, Van der Henst C, Vertommen D, Typas A, Collet J-F (2014) Detecting envelope stress by monitoring β-barrel assembly. Cell 159:1652–1664

    CAS  PubMed  Google Scholar 

  • Chong S, Chen C, Ge H, Xie XS (2014) Mechanism of transcriptional bursting in bacteria. Cell 158:314–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cipelletti L, Ramos L (2005) Slow dynamics in glassy soft matter. J Phys Condens Matter 17:R253–R285

    CAS  Google Scholar 

  • Cole NB (2013) Site-specific protein labeling with SNAP-tags. Curr Protoc Protein Sci 73:30.1.1–30.1.16

    Google Scholar 

  • Condamin S, Tejedor V, Voituriez R, Bénichou O, Klafter J (2008) Probing microscopic origins of confined subdiffusion by first-passage observables. Proc Natl Acad Sci U S A 105:5675–5680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das R, Cairo CW, Coombs D (2009) A hidden Markov model for single particle tracks quantifies dynamic interactions between LFA-1 and the actin cytoskeleton. PLoS Comput Biol 5:e1000556

    PubMed  PubMed Central  Google Scholar 

  • Deich J, Judd EM, McAdams HH, Moerner WE (2004) Visualization of the movement of single histidine kinase molecules in live Caulobacter cells. Proc Natl Acad Sci 101:15921–15926

    CAS  PubMed  Google Scholar 

  • Dempwolff F, Schmidt FK, Hervás AB, Stroh A, Rösch TC, Riese CN, Dersch S, Heimerl T, Lucena D, Hülsbusch N, Stuermer CAO, Takeshita N, Fischer R, Eckhardt B, Graumann PL (2016) Super resolution fluorescence microscopy and tracking of bacterial flotillin (Reggie) paralogs provide evidence for defined-sized protein microdomains within the bacterial membrane but absence of clusters containing detergent-resistant proteins. PLoS Genet 12:e1006116

    PubMed  PubMed Central  Google Scholar 

  • Deng W, Barkai E (2009) Ergodic properties of fractional Brownian-Langevin motion. Phys Rev E 79:011112

    Google Scholar 

  • Denoncin K, Vertommen D, Arts IS, Goemans CV, Rahuel-Clermont S, Messens J, Collet J-F (2014) A new role for Escherichia coli DsbC protein in protection against oxidative stress. J Biol Chem 289:12356–12364

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Pedro MA, Grünfelder CG, Schwarz H (2004) Restricted mobility of cell surface proteins in the polar regions of Escherichia coli. J Bacteriol 186:2594–2602

    PubMed  PubMed Central  Google Scholar 

  • Dorman CJ, Dorman MJ (2016) DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression. Biophys Rev 8:89–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drlica K, Rouviere-Yaniv J (1987) Histonelike proteins of bacteria. Microbiol Rev 51:301–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Einstein A (2007) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, pp 1–12

    Google Scholar 

  • Elowitz MB, Surette MG, Wolf PE, Stock JB, Leibler S (1999) Protein mobility in the cytoplasm of Escherichia coli. J Bacteriol 181:197–203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elson EL (2011) Fluorescence correlation spectroscopy: past, present, future. Biophys J 101:2855–2870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foley M, Brass JM, Birmingham J, Cook WR, Garland PB, Higgins CF, Rothfield LI (1989) Compartmentalization of the periplasm at cell division sites in Escherichia coli as shown by fluorescence photobleaching experiments. Mol Microbiol 3:1329–1336

    CAS  PubMed  Google Scholar 

  • Fu G, Bandaria JN, Le Gall AV, Fan X, Yildiz A, Mignot T, Zusman DR, Nan B (2018) MotAB-like machinery drives the movement of MreB filaments during bacterial gliding motility. Proc Natl Acad Sci U S A 115:2484–2489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA (2016) Formation of chromosomal domains by loop extrusion. Cell Rep 15:2038–2049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gebhardt JCM, Suter DM, Roy R, Zhao ZW, Chapman AR, Basu S, Maniatis T, Xie XS (2013) Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat Methods 10:421–426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbs KA, Isaac DD, Xu J, Hendrix RW, Silhavy TJ, Theriot JA (2004) Complex spatial distribution and dynamics of an abundant Escherichia coli outer membrane protein, LamB. Mol Microbiol 53:1771–1783

    CAS  PubMed  Google Scholar 

  • Goemans C, Denoncin K, Collet J-F (2014) Folding mechanisms of periplasmic proteins. Biochim Biophys Acta Mol Cell Res 1843:1517–1528

    CAS  Google Scholar 

  • Goiko M, de Bruyn JR, Heit B (2016) Short-lived cages restrict protein diffusion in the plasma membrane. Nat Publ Group 6:34987

    CAS  Google Scholar 

  • Golding I, Cox EC (2006) Physical nature of bacterial cytoplasm. Phys Rev Lett 96:098102

    PubMed  Google Scholar 

  • Grimm JB, English BP, Choi H, Muthusamy AK, Mehl BP, Dong P, Brown TA, Lippincott-Schwartz J, Liu Z, Lionnet T, Lavis LD (2016) Bright photoactivatable fluorophores for single-molecule imaging. Nat Methods 13:985–988

    CAS  PubMed  Google Scholar 

  • Grote GRMK, Risse JM, Friehs K (2018) Secretion of recombinant proteins from E. coli. Eng Life Sci 18:532–550

    Google Scholar 

  • Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, Fradkov AF, Lukyanov S, Lukyanov KA (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24:461–465

    CAS  PubMed  Google Scholar 

  • Havlin S, Ben-Avraham D (1987) Diffusion in disordered media. Adv Phys 36:695–798. Taylor & Francis

    Google Scholar 

  • He Y, Burov S, Metzler R, Barkai E (2008) Random time-scale invariant diffusion and transport coefficients. Phys Rev Lett 101:058101

    CAS  PubMed  Google Scholar 

  • Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hobot JA, Villiger W, Escaig J, Maeder M, Ryter A, Kellenberger E (1985) Shape and fine structure of nucleoids observed on sections of ultrarapidly frozen and cryosubstituted bacteria. J Bacteriol 162:960–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L, Vecchiarelli AG, Mizuuchi K, Neuman KC, Liu J (2015) Directed and persistent movement arises from mechanochemistry of the ParA/ParB system. Proc Natl Acad Sci U S A 112:E7055–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter GL, Weeks ER (2012) The physics of the colloidal glass transition. Reports on progress in physics. Phys Soc 75:066501

    Google Scholar 

  • Kapanidis AN, Uphoff S, Stracy M (2018) Understanding protein mobility in bacteria by tracking single molecules. J Mol Biol 430:4443–4455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SY, Gitai Z, Kinkhabwala A, Shapiro L, Moerner WE (2006) Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus. Proc Natl Acad Sci 103:10929–10934

    CAS  PubMed  Google Scholar 

  • Konopka MC, Shkel IA, Cayley S, Record MT, Weisshaar JC (2006) Crowding and confinement effects on protein diffusion in vivo. J Bacteriol 188:6115–6123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Mommer MS, Sourjik V (2010) Mobility of cytoplasmic, membrane, and DNA-binding proteins in Escherichia coli. Biophys J 98:552–559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kusumi A, Sako Y, Yamamoto M (1993) Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J 65:2021–2040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lampo TJ, Stylianidou S, Backlund MP, Wiggins PA, Spakowitz AJ (2017a) Cytoplasmic RNA-protein particles exhibit non-Gaussian subdiffusive behavior. Biophys J 112:532–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lampo TJ, Stylianidou S, Backlund MP, Wiggins PA, Spakowitz AJ (2017b) Cytoplasmic RNA-protein particles exhibit non-Gaussian subdiffusive behavior. Biophys J 112:532–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leake MC, Greene NP, Godun RM, Granjon T, Buchanan G, Chen S, Berry RM, Palmer T, Berks BC (2008) Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging. Proc Natl Acad Sci U S A 105:15376–15381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S-H, Shin JY, Lee A, Bustamante C (2012) Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc Natl Acad Sci U S A 109:17436–17441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lenn T, Leake MC, Mullineaux CW (2008) Clustering and dynamics of cytochrome bd-I complexes in the Escherichia coli plasma membrane in vivo. Mol Microbiol 70:1397–1407

    CAS  PubMed  Google Scholar 

  • Lessen HJ, Fleming PJ, Fleming KG, Sodt AJ (2018) Building blocks of the outer membrane: calculating a general elastic energy model for β-barrel membrane proteins. J Chem Theory Comput 14:4487–4497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez D, Koch G (2017) Exploring functional membrane microdomains in bacteria: an overview. Curr Opin Microbiol 36:76–84

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lorén N, Nydén M, Hermansson A-M (2009) Determination of local diffusion properties in heterogeneous biomaterials. Adv Colloid Interface Sci 150:5–15

    PubMed  Google Scholar 

  • Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RF, Wood KV (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382

    CAS  PubMed  Google Scholar 

  • Lucena D,Mauri M, Schmidt F, Eckhardt B, Graumann PL (2018) Microdomain formation is a general property of bacterial membrane proteins and induces heterogeneity of diffusion patterns. BMC biology, 16(1):1–17

    Google Scholar 

  • Lukinavičius G, Umezawa K, Olivier N, Honigmann A, Yang G, Plass T, Mueller V, Reymond L, Corrêa IR Jr, Luo Z-G, Schultz C, Lemke EA, Heppenstall P, Eggeling C, Manley S, Johnsson K (2013) A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat Chem 5:132–139

    PubMed  Google Scholar 

  • Lutz E (2001) Fractional Langevin equation. Phys Rev E Stat Nonlinear Soft Matter Phys 64:051106

    CAS  Google Scholar 

  • Martin DS, Forstner MB, Käs JA (2002) Apparent subdiffusion inherent to single particle tracking. Biophys J 83:2109–2117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mas G, Thoma J, Hiller S (2019) The periplasmic chaperones Skp and SurA. In: Kuhn A (ed) Bacterial cell walls and membranes. Springer, Cham, pp 169–186

    Google Scholar 

  • Matsuda Y, Hanasaki I, Iwao R, Yamaguchi H, Niimi T (2018) Estimation of diffusive states from single-particle trajectory in heterogeneous medium using machine-learning methods. Phys Chem Chem Phys PCCP 20:24099–24108

    CAS  PubMed  Google Scholar 

  • Michalet X, Berglund AJ (2012) Optimal diffusion coefficient estimation in single-particle tracking. Phys Rev E Stat Nonlinear Soft Matter Phys 85:061916

    Google Scholar 

  • Mika JT, Poolman B (2011) Macromolecule diffusion and confinement in prokaryotic cells. Curr Opin Biotechnol 22:117–126

    CAS  PubMed  Google Scholar 

  • Mullineaux CW, Nenninger A, Ray N, Robinson C (2006) Diffusion of green fluorescent protein in three cell environments in Escherichia coli. J Bacteriol 188:3442–3448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagle JF (1992) Long tail kinetics in biophysics? Biophys J 63:366–370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen HJ, Li Y, Youngren B, Hansen FG, Austin S (2006) Progressive segregation of the Escherichia coli chromosome. Mol Microbiol 61:383–393

    CAS  PubMed  Google Scholar 

  • Niu L, Yu J (2008) Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. Biophys J 95:2009–2016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oddershede L, Dreyer JK, Grego S, Brown S, Berg-Sørensen K (2002) The motion of a single molecule, the lambda-receptor, in the bacterial outer membrane. Biophys J 83:3152–3161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oh D, Yu Y, Lee H, Wanner BL, Ritchie K (2014) Dynamics of the serine chemoreceptor in the Escherichia coli inner membrane: a high-speed single-molecule tracking study. Biophys J 106:145–153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ormö M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the aequorea victoria green fluorescent protein. Science 273:1392–1395

    PubMed  Google Scholar 

  • Oswald F, Varadarajan A, Lill H, Peterman EJG, Bollen YJM (2016) MreB-dependent organization of the E. coli cytoplasmic membrane controls membrane protein diffusion. Biophys J 110:1139–1149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oyama N, Kawasaki T, Mizuno H, Ikeda A (2019) Glassy dynamics of a model of bacterial cytoplasm with metabolic activities. Phys Rev Res 1:032038

    Google Scholar 

  • Pan W, Filobelo L, Pham NDQ, Galkin O, Uzunova VV, Vekilov PG (2009) Viscoelasticity in homogeneous protein solutions. Phys Rev Lett 102:108–4

    Google Scholar 

  • Parry BR, Surovtsev IV, Cabeen MT, O’Hern CS, Dufresne ER, Jacobs-Wagner C (2014) The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 156:183–194

    CAS  PubMed  Google Scholar 

  • Perez AJ, Cesbron Y, Shaw SL, Bazan Villicana J, Tsui H-CT, Boersma MJ, Ye ZA, Tovpeko Y, Dekker C, Holden S, Winkler ME (2019) Movement dynamics of divisome proteins and PBP2x:FtsW in cells of Streptococcus pneumoniae. Proc Natl Acad Sci U S A 116:3211–3220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Persson F, Lindén M, Unoson C, Elf J (2013) Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat Methods 10:265–269

    PubMed  Google Scholar 

  • Postow L, Hardy CD, Arsuaga J, Cozzarelli NR (2004) Topological domain structure of the Escherichia coli chromosome. Genes Dev 18:1766–1779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rassam P, Copeland NA, Birkholz O, Tóth C, Chavent M, Duncan AL, Cross SJ, Housden NG, Kaminska R, Seger U, Quinn DM, Garrod TJ, Sansom MSP, Piehler J, Baumann CG, Kleanthous C (2015) Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria. Nature 523:333–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rayan G, Guet J-E, Taulier N, Pincet F, Urbach W (2010) Recent applications of fluorescence recovery after photobleaching (FRAP) to membrane bio-macromolecules. Sensors 10:5927–5948

    PubMed  Google Scholar 

  • Ringgaard S, van Zon J, Howard M, Gerdes K (2009) Movement and equipositioning of plasmids by ParA filament disassembly. Proc Natl Acad Sci U S A 106:19369–19374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rudner DZ, Losick R (2010) Protein subcellular localization in bacteria. Cold Spring Harb Perspect Biol 2:a000307–a000307

    PubMed  PubMed Central  Google Scholar 

  • Ruiz N, Kahne D, Silhavy TJ (2006) Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol 4:57–66

    PubMed  Google Scholar 

  • Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sadoon AA, Wang Y (2018) Anomalous, non-Gaussian, viscoelastic, and age-dependent dynamics of histonelike nucleoid-structuring proteins in live Escherichia coli. Physical Review E, 98(4):042411

    CAS  Google Scholar 

  • Saffman PG, Delbrück M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci 72:3111–3113

    CAS  PubMed  Google Scholar 

  • Schavemaker PE, Śmigiel WM, Poolman B (2017) Ribosome surface properties may impose limits on the nature of the cytoplasmic proteome. eLife 6

    Google Scholar 

  • Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    CAS  PubMed  Google Scholar 

  • Shaner NC, Lambert GG, Chammas A, Ni Y, Cranfill PJ, Baird MA, Sell BR, Allen JR, Day RN, Israelsson M, Davidson MW, Wang J (2013) A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat Methods 10:407–409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slator PJ, Burroughs NJ (2018) A hidden Markov model for detecting confinement in single-particle tracking trajectories. Biophys J 115:1741–1754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sochacki KA, Shkel IA, Record MT, Weisshaar JC (2011) Protein diffusion in the periplasm of E. coli under osmotic stress. Biophys J 100:22–31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spector J, Zakharov S, Lill Y, Sharma O, Cramer WA, Ritchie K (2010) Mobility of BtuB and OmpF in the Escherichia coli outer membrane: implications for dynamic formation of a translocon complex. Biophys J 99:3880–3886

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanenko OV, Stepanenko OV, Shcherbakova DM, Kuznetsova IM, Turoverov KK, Verkhusha VV (2011) Modern fluorescent proteins: from chromophore formation to novel intracellular applications. BioTechniques 51:313–4–316–318 passim

    Google Scholar 

  • Stracy M, Uphoff S, Garza de Leon F, Kapanidis AN (2014) In vivo single-molecule imaging of bacterial DNA replication, transcription, and repair. FEBS Lett 588:3585–3594

    CAS  PubMed  Google Scholar 

  • Stracy M, Lesterlin C, Garza de Leon F, Uphoff S, Zawadzki P, Kapanidis AN (2015) Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc Natl Acad Sci U S A 112:E4390–E4399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stracy M, Wollman AJ, Kaja E, Gapinski J, Lee J-E, Leek VA, McKie SJ, Mitchenall LA, Maxwell A, Sherratt DJ, Leake MC, Zawadzki P (2018) Single-molecule imaging of DNA gyrase activity in living Escherichia coli. Nucleic Acids Res 6:11055–11

    Google Scholar 

  • Strahl H, Bürmann F, Hamoen LW (2014) The actin homologue MreB organizes the bacterial cell membrane. Nat Commun 5:3442

    PubMed  PubMed Central  Google Scholar 

  • Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6:153–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swaminathan R, Hoang CP, Verkman AS (1997) Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys J 72:1900–1907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terry BR, Matthews EK, Haseloff J (1995) Molecular characterisation of recombinant green fluorescent protein by fluorescence correlation microscopy. Biochem Biophys Res Commun 217:21–27

    CAS  PubMed  Google Scholar 

  • Thapa S, Lomholt MA, Krog J, Cherstvy AG, Metzler R (2018) Bayesian analysis of single-particle tracking data using the nested-sampling algorithm: maximum-likelihood model selection applied to stochastic-diffusivity data. Phys Chem Chem Phys PCCP 20:29018–29037

    CAS  PubMed  Google Scholar 

  • van den Bogaart G, Hermans N, Krasnikov V, Poolman B (2007) Protein mobility and diffusive barriers in Escherichia coli: consequences of osmotic stress. Mol Microbiol 64:858–871

    PubMed  Google Scholar 

  • Verhoeven GS, Dogterom M, den Blaauwen T (2013) Absence of long-range diffusion of OmpA in E. coli is not caused by its peptidoglycan binding domain. BMC Microbiol 13:66

    Google Scholar 

  • Vink JNA, Martens KJA, Vlot M, McKenzie RE, Almendros C, Estrada Bonilla B, Brocken DJW, Hohlbein J, Brouns SJJ (2020) Direct visualization of native CRISPR target search in live bacteria reveals cascade DNA surveillance mechanism. Mol Cell 77:39–50.e10

    Google Scholar 

  • von Hippel PH, Berg OG (1989) Facilitated target location in biological systems. J Biol Chem 264:675–678

    Google Scholar 

  • Vrljic M, Nishimura SY, Moerner WE (2007) Single-molecule tracking. Methods Mol Biol 398:193–219

    CAS  PubMed  Google Scholar 

  • Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, Jun S (2010) Robust growth of Escherichia coli. Curr Biol CB 20:1099–1103

    CAS  PubMed  Google Scholar 

  • Wang W, Li G-W, Chen C, Xie XS, Zhuang X (2011) Chromosome organization by a nucleoid-associated protein in live bacteria. Science 333:1445–1449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber SC, Spakowitz AJ, Theriot JA (2010a) Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. Phys Rev Lett 104:238102

    PubMed  PubMed Central  Google Scholar 

  • Weber SC, Theriot JA, Spakowitz AJ (2010b) Subdiffusive motion of a polymer composed of subdiffusive monomers. Phys Rev E 82:011913

    Google Scholar 

  • Weber SC, Thompson MA, Moerner WE, Spakowitz AJ, Theriot JA (2012a) Analytical tools to distinguish the effects of localization error, confinement, and medium elasticity on the velocity autocorrelation function. Biophys J 102:2443–2450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber SC, Spakowitz AJ, Theriot JA (2012b) Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci. Proc Natl Acad Sci U S A 109:7338–7343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks ER, Weitz DA (2002) Properties of cage rearrangements observed near the colloidal glass transition. Phys Rev Lett 89:095704

    PubMed  Google Scholar 

  • Weiss M (2013) Single-particle tracking data reveal anticorrelated fractional Brownian motion in crowded fluids. Phys Rev E 88:010101

    Google Scholar 

  • Weng X, Bohrer CH, Bettridge K, Lagda AC, Cagliero C, Jin DJ, Xiao J (2018) RNA polymerase organizes into distinct spatial clusters independent of ribosomal RNA transcription in E. coli. BioRxiv 320481

    Google Scholar 

  • Wheeler RT, Shapiro L (1999) Differential localization of two histidine kinases controlling bacterial cell differentiation. Mol Cell 4:683–694

    CAS  PubMed  Google Scholar 

  • Winick M (1968) Changes in nucleic acid and protein content of the human brain during growth. Pediatr Res 2:352–355

    CAS  PubMed  Google Scholar 

  • Winther T, Xu L, Berg-Soslashrensen K, Brown S, Oddershede LB (2009) Effect of energy metabolism on protein motility in the bacterial outer membrane. Biophys J 97:1305–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao J, Elf J, LiG, Yu J, Xie XS (2007) Imaging gene expression in living cells at the single-molecule level. In Single Molecules: a laboratory manual, Edited by Selvin P and Ha T, Cold Spring Harbor Press, New York city, 149–160

    Google Scholar 

  • Yang X, Lyu Z, Miguel A, McQuillen R, Huang KC, Xiao J (2017) GTPase activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. Science 355:744–747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeow EKL, Melnikov SM, Bell TDM, Schryver FCD, Hofkens J (2006) Characterizing the fluorescence intermittency and photobleaching kinetics of dye molecules immobilized on a glass surface. J Phys Chem A 110:1726–1734

    CAS  PubMed  Google Scholar 

  • Zhang F, Lee GM, Jacobson K (1993) Protein lateral mobility as a reflection of membrane microstructure. BioEssays News Rev Mol Cell Dev Biol 15:579–588

    CAS  Google Scholar 

  • Zhang G, Gurtu V, Kain SR (1996) An enhanced green fluorescent protein allows sensitive detection of gene transfer in Mammalian cells. Biochem Biophys Res Commun 227:707–711

    CAS  PubMed  Google Scholar 

  • Zhang LC, Chen YF, Chen WL, Zhang CC (2008) Existence of periplasmic barriers preventing green fluorescent protein diffusion from cell to cell in the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 70:814–823

    CAS  PubMed  Google Scholar 

  • Zhang M, Chang H, Zhang Y, Yu J, Wu L, Ji W, Chen J, Liu B, Lu J, Liu Y, Zhang J, Xu P, Xu T (2012) Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods 9:727–729

    CAS  PubMed  Google Scholar 

  • Zhang LC, Risoul V, Latifi A, Christie JM, Zhang CC (2013) Exploring the size limit of protein diffusion through the periplasm in cyanobacterium Anabaena sp. PCC 7120 using the 13 kDa iLOV fluorescent protein. Res Microbiol 164:710–717

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Xinxing Yang and Nicolas Yehya for their comments and feedback.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bohrer, C.H., Xiao, J. (2020). Complex Diffusion in Bacteria. In: Duménil, G., van Teeffelen, S. (eds) Physical Microbiology. Advances in Experimental Medicine and Biology, vol 1267. Springer, Cham. https://doi.org/10.1007/978-3-030-46886-6_2

Download citation

Publish with us

Policies and ethics