Skip to main content

Methodologies for Millimeter-Wave Circuit Design

  • Chapter
  • First Online:
Millimeter-Wave Integrated Circuits

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 658))

  • 670 Accesses

Abstract

At this point in the book, the reader has been introduced to three important aspects of methodologies for research, design and innovation in the millimeter-wave regime for technologies such as 5G. In Chap. 1, it was concluded that millimeter-wave research requires highly scaled process technologies with miniature features, with transistors so small that nanoscale effects come into play. In Chap. 2, it was established that the success of nanoscale circuit design depends heavily on the availably of modern EDA tools working with very advanced physics-based component models that allow design flow execution from schematic circuit design right down to layout verification and mask-processing steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gray PR, Hurst P, Meyer RG, Lewis S (2009) Analysis and design of analog integrated circuits. Wiley, New York

    Google Scholar 

  2. Ndjountche T (2018) Amplifiers, comparators, multipliers, filters, and oscillators. CRC Press, Boca Raton

    Book  Google Scholar 

  3. Božanić M, Sinha S (2015) Power Amplifiers for the S-, C-, X- and Ku-bands: An EDA Perspective. Springer, Berlin

    Google Scholar 

  4. Raab FH, Asbeck P, Cripps S, Kenington PB, Popovic ZB, Pothecary N et al (2003) RF and microwave power amplifier and transmitter technologies—part 1. High Freq Electron 2:22–36

    Google Scholar 

  5. Kazimierczuk MK (2014) RF power amplifiers. Wiley, New York

    Book  Google Scholar 

  6. du Preez J, Sinha S (2017) Millimeter-wave power amplifiers. Springer, Berlin

    Book  Google Scholar 

  7. Nikandish G, Medi A (2013) A design procedure for high-efficiency and compact-size 5–10-W MMIC power amplifiers in GaAs pHEMT technology. IEEE Trans Microw Theory Tech 61:2922–2933

    Article  Google Scholar 

  8. Eccleston KW, Smith KJI, Gough PT (2011) A compact class-F/class-C Doherty amplifier. Microw Opt Technol Lett 53:1606–1610

    Article  Google Scholar 

  9. Banerjee A, Hezar R, Ding L (2015) Efficiency improvement techniques for RF power amplifiers in deep submicron CMOS. In: 2015 IEEE custom integrated circuits conference (CICC), pp 1–4

    Google Scholar 

  10. Božanić M, Sinha S (2017) Millimeter-wave low noise amplifiers. Springer, Berlin

    Google Scholar 

  11. Chaturvedi S, Bozanic M, Sinha S (2017) Millimeter wave passive bandpass filters. Microw J 60

    Google Scholar 

  12. Chaturvedi S, Božanic M, Sinha S (2017) Millimeter wave active bandpass filters. Microw J 60

    Google Scholar 

  13. Ismail A, Abidi AA (2004) A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network. IEEE J Solid-State Circuits 39:2269–2277

    Article  Google Scholar 

  14. Min B, Rebeiz GM (2007) Ka-band SiGe HBT low noise amplifier design for simultaneous noise and input power matching. IEEE Microw Wirel Compon Lett 17:891–893

    Article  Google Scholar 

  15. Ortega RD, Khemchandani SL, Vzquez HG, del Pino Surez FJ (2014) Design of low-noise amplifiers for ultra-wideband communications. McGraw-Hill Professional, New York

    Google Scholar 

  16. Grebennikov A, Kumar N, Yarman BS (2017) Broadband RF and microwave amplifiers. CRC Press, Boca Raton

    Google Scholar 

  17. Fritsche D, Tretter G, Carta C, Ellinger F (2015) Millimeter-wave low-noise amplifier design in 28-nm low-power digital CMOS. IEEE Trans Microw Theory Tech 63:1910–1922

    Article  Google Scholar 

  18. Božanić M, Sinha S (2019) Systems-level packaging for millimeter-wave transceivers. Springer, Berlin

    Google Scholar 

  19. Wu P, Liu F, Li J, Chen C, Hou F, Cao L et al (2017) Design and implementation of a rigid-flex RF front-end system-in-package. Microsyst Technol 23:4579–4589

    Article  Google Scholar 

  20. Ludwig R, Bretchko P (2000) RF circuit design: theory and applications. Pearson Education, London

    Google Scholar 

  21. Odyniec M (2002) RF and microwave oscillator design. Artech House, Norwood

    Google Scholar 

  22. Grebennikov A (2007) RF and microwave transistor oscillator design. Wiley, New York

    Google Scholar 

  23. Imani A, Hashemi H (2018) Frequency and power scaling in mm-wave colpitts oscillators. IEEE J Solid-State Circuits 53:1338–1347

    Article  Google Scholar 

  24. Momeni O, Afshari E (2011) High power terahertz and millimeter-wave oscillator design: a systematic approach. IEEE J Solid-State Circuits 46:583–597

    Article  Google Scholar 

  25. Yang X, Matthaiou M, Yang J, Wen C, Gao F, Jin S (2019) Hardware-constrained millimeter-wave systems for 5G: challenges, opportunities, and solutions. IEEE Commun Mag 57:44–50

    Article  Google Scholar 

  26. Everard J (2001) Fundamentals of RF circuit design: with low noise oscillators. Wiley, New York

    Google Scholar 

  27. Yeo KS, Ma K (2018) Low-power wireless communication circuits and systems: 60 GHz and beyond. CRC Press, Boca Raton

    Google Scholar 

  28. Pan D, Duan Z, Huang L, Wang Y, Zhou Y, Wu B et al (2018) A 76–81 GHz CMOS down-conversion mixer for automotive radar. In: 2018 International conference on IC design technology (ICICDT), pp 73–76

    Google Scholar 

  29. Lu M-C, Chang J-F, Lu L-C, Lin Y-S (2009) Miniature 60‐GHz‐B and bandpass filter with 2.55‐dB insertion‐loss using standard 0.13 μm CMOS technology. Microw Opt Technol Lett (cited 9 Aug 2019)

    Google Scholar 

  30. Chaturvedi S, Bozanic M, Sinha S (2017) A 50 GHz SiGe BiCMOS active bandpass filter. In: 2017 IEEE 20th international symposium on design and diagnostics of electronic circuits & systems (DDECS), Dresden

    Google Scholar 

  31. Chaturvedi S, Bozanic M, Sinha S (2019) 60 GHz BiCMOS active bandpass filters. Microelectron J 90:315–322

    Google Scholar 

  32. Razavi B (2009) Design of millimeter-wave CMOS radios: a tutorial. IEEE Trans Circuits Syst I Regul Pap 56:4–16

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mladen Božanić .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Božanić, M., Sinha, S. (2020). Methodologies for Millimeter-Wave Circuit Design. In: Millimeter-Wave Integrated Circuits. Lecture Notes in Electrical Engineering, vol 658. Springer, Cham. https://doi.org/10.1007/978-3-030-44398-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44398-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44397-9

  • Online ISBN: 978-3-030-44398-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics