Skip to main content

Approximating Gaussian Process Emulators with Linear Inequality Constraints and Noisy Observations via MC and MCMC

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods (MCQMC 2018)

Abstract

Adding inequality constraints (e.g. positivity, monotonicity, convexity) in Gaussian processes (GPs) leads to more realistic stochastic emulators. Due to the truncated Gaussianity of the posterior, its distribution has to be approximated. In this work, we consider Monte Carlo (MC) and Markov Chain MC (MCMC) methods. However, strictly interpolating the observations may entail expensive computations due to highly restrictive sample spaces. Furthermore, having emulators when data are actually noisy is also of interest for real-world applications. Hence, we introduce a noise term for the relaxation of the interpolation conditions, and we develop the corresponding approximation of GP emulators under linear inequality constraints. We demonstrate on various synthetic examples that the performance of MC and MCMC samplers improves when considering noisy observations. Finally, on 2D and 5D coastal flooding applications, we show that more flexible and realistic emulators are obtained by considering noise effects and by enforcing the inequality constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azzimonti, D.: profExtrema: Compute and visualize profile extrema functions. R package version 0.2.0 (2018)

    Google Scholar 

  2. Azzimonti, D., Ginsbourger, D., Rohmer, J., Idier, D.: Profile extrema for visualizing and quantifying uncertainties on excursion regions. Application to coastal flooding. Technometrics 0(ja), 1–26 (2019)

    Google Scholar 

  3. Bay, X., Grammont, L., Maatouk, H.: Generalization of the Kimeldorf-Wahba correspondence for constrained interpolation. Electron. J. Stat. 10(1), 1580–1595 (2016)

    Article  MathSciNet  Google Scholar 

  4. Botev, Z.I.: The normal law under linear restrictions: simulation and estimation via minimax tilting. J. R. Stat. Soc.: Ser. B 79(1), 125–148 (2017)

    Article  MathSciNet  Google Scholar 

  5. Cousin, A., Maatouk, H., Rullière, D.: Kriging of financial term-structures. Eur. J. Oper. Res. 255(2), 631–648 (2016)

    Article  MathSciNet  Google Scholar 

  6. Deville, Y., Ginsbourger, D., Durrande, N., Roustant, O.: kergp: Gaussian process laboratory. R package version 0.2.0 (2015)

    Google Scholar 

  7. Dupuy, D., Helbert, C., Franco, J.: DiceDesign and DiceEval: two R packages for design and analysis of computer experiments. J. Stat. Softw. 65(11), 1–38 (2015)

    Article  Google Scholar 

  8. Geyer, C.J.: Practical Markov Chain Monte Carlo. Stat. Sci. 7(4), 473–483 (1992)

    Article  Google Scholar 

  9. Golchi, S., Bingham, D.R., Chipman, H., Campbell, D.A.: Monotone emulation of computer experiments. SIAM/ASA J. Uncertain. Quantif. 3(1), 370–392 (2015)

    Article  MathSciNet  Google Scholar 

  10. Goldfarb, D., Idnani, A.: Dual and primal-dual methods for solving strictly convex quadratic programs. Numerical Analysis, pp. 226–239. Springer, New York (1982)

    Google Scholar 

  11. Gong, L., Flegal, J.M.: A practical sequential stopping rule for high-dimensional Markov Chain Monte Carlo. J. Comput. Graph. Stat. 25(3), 684–700 (2016)

    Article  MathSciNet  Google Scholar 

  12. Lan, S., Shahbaba, B.: Sampling constrained probability distributions using spherical augmentation. Algorithmic Advances in Riemannian Geometry and Applications, pp. 25–71. Springer, New York (2016)

    Google Scholar 

  13. Larson, M.G., Bengzon, F.: The Finite Element Method: Theory, Implementation, and Applications. Springer, New York (2013)

    Book  Google Scholar 

  14. López-Lopera, A.F.: lineqGPR: Gaussian process regression models with linear inequality constraints. R package version 0.0.3 (2018)

    Google Scholar 

  15. López-Lopera, A.F., Bachoc, F., Durrande, N., Roustant, O.: Finite-dimensional Gaussian approximation with linear inequality constraints. SIAM/ASA J. Uncertain. Quantif. 6(3), 1224–1255 (2018)

    Article  MathSciNet  Google Scholar 

  16. Maatouk, H., Bay, X.: A new rejection sampling method for truncated multivariate Gaussian random variables restricted to convex sets. Monte Carlo and Quasi-Monte Carlo Methods, pp. 521–530. Springer, New York (2016)

    Google Scholar 

  17. Maatouk, H., Bay, X.: Gaussian process emulators for computer experiments with inequality constraints. Math. Geosci. 49(5), 557–582 (2017)

    Article  MathSciNet  Google Scholar 

  18. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. Adaptive Computation and Machine Learning Series. The MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  19. Pakman, A., Paninski, L.: Exact Hamiltonian Monte Carlo for truncated multivariate Gaussians. J. Comput. Graph. Stat. 23(2), 518–542 (2014)

    Article  MathSciNet  Google Scholar 

  20. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. The MIT Press, Cambridge (2005)

    Book  Google Scholar 

  21. Rohmer, J., Idier, D.: A meta-modelling strategy to identify the critical offshore conditions for coastal flooding. Nat. Hazards Earth Syst. Sci. 12(9), 2943–2955 (2012)

    Article  Google Scholar 

  22. Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: two R packages for the analysis of computer experiments by Kriging-based metamodeling and optimization. J. Stat. Softw. 51(1), 1–55 (2012)

    Article  Google Scholar 

  23. Taylor, J., Benjamini, Y.: restrictedMVN: multivariate normal restricted by affine constraints. R package version 1.0 (2016)

    Google Scholar 

Download references

Acknowledgements

This research was conducted within the frame of the Chair in Applied Mathematics OQUAIDO, gathering partners in technological research (BRGM, CEA, IFPEN, IRSN, Safran, Storengy) and academia (CNRS, Ecole Centrale de Lyon, Mines Saint-Etienne, Univ. Grenoble, Univ. Nice, Univ. Toulouse) around advanced methods for computer experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés F. López-Lopera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López-Lopera, A.F., Bachoc, F., Durrande, N., Rohmer, J., Idier, D., Roustant, O. (2020). Approximating Gaussian Process Emulators with Linear Inequality Constraints and Noisy Observations via MC and MCMC. In: Tuffin, B., L'Ecuyer, P. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2018. Springer Proceedings in Mathematics & Statistics, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-030-43465-6_18

Download citation

Publish with us

Policies and ethics